Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young’s moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
Xylene is one of the representative indoor pollutants, even in ppb levels, that affect human health directly. Due to the non-polar and less reactive nature of xylene, its room temperature detection is challenging. This work demonstrates a metallic tin-doped Sn-SnO 2 nanocomposite under controlled pH conditions via a simple solvothermal route. The Sn nanoparticles are uniformly distributed inside the SnO 2 nanospheres of ∼70 nm with a high specific surface area of 118.8 m 2 /g. The surface of the Sn-SnO 2 nanocomposite exhibits strong affinity toward benzene, toluene, ethylbenzene, and xylene (BTEX) compared to other polar volatile organic compounds (VOCs) such as ethanol, acetone, isopropyl alcohol, formaldehyde, and chloroform tested in this study. The sensor's response is highest for xylene among BTEX molecules. Under ambient room temperature conditions, the sensor exhibits a linear response to xylene in the 1−100 ppm range with a sensitivity of ∼255% at 60 ppm within ∼1.5 s and recovers in ∼40 s. The sensor is hardly affected by humidity variations (40−70%), leading to enhanced reliability and repeatability under dynamic environmental conditions. The meso and microporous nanosphere morphology act as a nanocontainer for non-polar VOCs to diffuse inside the nanostructures, providing easy accessibility. The metallic Sn increases the affinity for less reactive xylene at room temperature. Thus, the nanocatalytic Sn-SnO 2 nanocomposite is an active gas/VOC sensing material and provides an effective solution for sensing major indoor pollutants under humid conditions.
No abstract
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.