Futuristic healthcare technology including glucose sensors demands wearable components that ought to be transparent and flexible. Nickel nanostructures have proven to be highly efficient as electrocatalysts for glucose sensors. In this study, we explore single-source precursors of nickel alkylthiolate, Ni(SR) 2 , complexes as active electrode materials and coat them on a transparent gold (Au) mesh network to fabricate a transparent and highly efficient glucose sensor. The metal thiolate complex is electrooxidized in the alkaline medium by repeated cyclic voltammetry measurements to give rise to Ni redox-active centers with sharp anodic and cathodic peaks. Among different chain length metal alkylthiolates, nickel butanethiolate with the shortest carbon chain (C4) is found to be the most efficient in retaining sharp oxidation at low potential value and high current density. The electrochemical property of nickel butanethiolate toward glucose oxidation is examined on different electrode surfaces such as Au thin film, Au mesh, and fluorine-doped tin oxide (FTO). Interestingly, glucose oxidation takes place most efficiently on a Au mesh network compared to Au film and FTO substrates. The Ni(SC 4 H 9 ) 2 /Au mesh exhibited two linear ranges of detection from 0.5−2 and 2−11 mM with a sensitivity value of 675.97 μA mM −1 cm −2 and a limit of detection of 2.2 μM along with excellent selectivity and reproducibility. The present study demonstrates that nickel butanethiolate on a Au mesh acts as a promising functional and transparent electrode material with the possibility of large-scale production for practical glucose detection.
Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young’s moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.
The disposal of organic waste materials such as polymers is a serious problem to natural ecosystems as some of them can be non-biodegradable and potentially toxic. Thus, there is immense interest in developing processes that convert waste polystyrene into useable carbon. In this work, we developed a unique approach for obtaining graphitic carbon from waste polystyrene as a raw carbon source. The conversion process is catalyzed using the Ni-butanethiolate ink in ultralow quantities under an optimized temperature (800 °C) in the presence of 5% hydrogen in nitrogen. Interestingly, macroporous sugar cubes are used as a soft template to hold polystyrene and the catalyst together during decomposition, eliminating the need for a high-pressure source for retaining carbon for graphitization at high temperatures. An additional step of hydrogen annealing for pyrolyzed carbon nullifies the surface effects and improves the graphitization, reduces the point defects, and enhances the crystallinity of carbon and electrical conductivity specifically required for an electric double-layer capacitor (EDLC). The SPC8H-based graphitic carbon electrode exhibits perfect rectangular cyclic voltammetry characteristics with a symmetric triangular charge–discharge curve and a specific capacitance of ∼158 F/g at 1 A/g. The two-electrode EDLC device demonstrated excellent cyclic stability with a capacitance retention of ∼90% even after 10,000 cycles. This study reveals that the trashed polystyrene waste could be transformed into highly crystalline, graphitic carbon electrodes for energy storage devices. This indeed offers an alternative and sustainable approach with a low price to high-performance ratio that can probably manage the issue of white pollution at a commercial scale.
A variety of electrochemical (EC) biosensors play critical roles in disease diagnostics. More recently, DNA-based EC sensors have been established as promising for detecting a wide range of analyte classes. Since most of these sensors rely on the high specificity of DNA hybridization for analyte binding or structural control, it is crucial to understand the kinetics of hybridization at the electrode surface. In this work, we have used methylene blue-labeled DNA strands to monitor the kinetics of DNA hybridization at the electrode surface with square-wave voltammetry. By varying the position of the double-stranded DNA segment relative to the electrode surface as well as the bulk solution’s ionic strength (0.125–1.00 M), we observed significant interferences with DNA hybridization closer to the surface, with more substantial interference at lower ionic strength. As a demonstration of the effect, toehold-mediated strand displacement reactions were slowed and diminished close to the surface, while strategic placement of the DNA binding site improved reaction rates and yields. This work manifests that both the salt concentration and DNA hybridization site relative to the electrode are important factors to consider when designing DNA-based EC sensors that measure hybridization directly at the electrode surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.