Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
The genome sequencing of all major food and bioenergy crops is of critical importance in the race to improve crop production to meet the future food and energy security needs of the world. Next generation sequencing technologies have brought about great improvements in sequencing throughput and cost, but do not yet allow for de novo sequencing of large repetitive genomes as found in most crop plants. We present a strategy that combines cutting edge next generation sequencing with "old school" genomics resources and allows rapid cost-effective sequencing of plant genomes.
Immunotherapy targeting PD-1/PD-L1 axis showed benefits in cancer. Prognostic significance of tumour infiltrating lymphocytes (TILs) has been determined. We evaluated PD-L1 protein expression in tumour cells and TILs, PD-L1 mRNA level and various histopathologic factors including TILs using 167 formalin-fixed paraffin embedded tissues and 39 fresh tissue of HER2-positive breast cancer. TILs level and PD-L1 expression in tumour cells and TILs were significantly correlated one another. PD-L1 positivity in tumour cells was associated with high histologic grade and high TILs level (p < 0.001, both). High PD-L1 immunoscore in TILs and high total immunoscore (in tumour cells and TILs) of PD-L1 were correlated with high histologic grade (p = 0.001 and p < 0.001, respectively), absence of lymphovascular invasion (p = 0.012 and p = 0.007, respectively), negative hormone receptor expression (p = 0.044 and p = 0.001, respectively) and high TILs level (p < 0.001, both). High PD-L1 mRNA expression was associated with high TILs level (p < 0.001, both). PD-L1 positivity in tumour cells was associated with better disease-free survival in HR−/HER2+ breast cancer (p = 0.039). PD-L1 expression in tumour cells and TILs are significantly associated with TILs level in HER2-positive breast cancer. PD-L1 expression in tumour cells might be positive prognostic factor in HR−/HER2+ breast cancers.
[18F]AV-1451 is one of the most widely used radiotracers for positron emission tomography (PET) imaging of tau protein aggregates in neurodegenerative disorders. While the radiotracer binds with high affinity to tau neurofibrillary tangles, extensive clinical studies have simultaneously revealed off-target tracer accumulation in areas of low tau burden such as the basal ganglia and choroid plexus. Though there are a number of possible reasons for this accumulation, it is often attributed to off-target binding to monoamine oxidase (MAO). In this paper, we investigate the association between [18F]AV-1451 and MAO through (i) enzyme inhibition assays, (ii) autoradiography with postmortem tissue samples, and (iii) nonhuman primate PET imaging. We confirm that [18F]AV-1451 is a weak inhibitor of MAO-A and -B and that MAO inhibitors can alter binding of [18F]AV-1451 in autoradiography and in vivo PET imaging.
The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.93). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.