Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of α- and β-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of α- and β-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at 37°C at pH 6.0 for 30 h. The optimal production of α- and β-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both α- and β-galactosidases was 6.0. The optimum temperatures were 35°C for α-galactosidase and 37°C for β- galactosidase. They showed temperature stability up to 37°C . At a 1 mM concentration of metal ions, CuSO4 inhibited the activities of α- and β-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of α- and β-galactosidases, which may reduce the levels of flatulence factors.
Various strains of Lactobacillus and Leuconostoc species were evaluated to select the most promising strain to carry out transforming major ginsenosides into minor ginsenosides. Among the experimental lactic acid bacteria (LAB), Leuconostoc mesenteroides KFRI 690, Leuconostoc paramesenteroides KFRI 159, and Lactobacillus delbrueckii KCCM 35486 produced compound K from major ginsenosides precursors (Rb1, Rc, Rd, and F2). KFRI 690 showed the best transforming activity among them. Furthermore, these LABs could biotransform ginsenosides without disrupting the cell to release enzyme activity. The conversion ratio of Rb1 to compound K using KFRI 690 has been enhanced up to 97.8% by adding 2% sucrose into the culture medium. This is the first report on the production of compound K using whole cells of Leu. mesenteroides, Leu. paramesenteroides, and Lb. delbrueckii, which are food grade lactic acid bacteria.
Raw chicken products are major causes of human foodborne salmonellosis worldwide. In particular, there is a significant risk of human exposure to Salmonella originating from the chicken slaughtering process. Controlling the contamination of chicken carcasses by Salmonella has been a considerable challenge in chicken-slaughtering facilities and involves routine microbiological monitoring using reliable detection methods. Simple and rapid detection methods, particularly those capable of determining cell viability, will significantly facilitate routine monitoring of Salmonella Here, we report an invA-based loop-mediated isothermal amplification method coupled with a simple propidium monoazide treatment (PMA-LAMP) for simple and rapid detection and quantification of viable Salmonella in rinse water of chicken carcasses. In this study, PMA-LAMP consistently gave negative results for isopropanol-killed Salmonella with concentrations up to 8.0 × 10 CFU/reaction. The detection limit of PMA-LAMP was 8.0 × 10 CFU/reaction with viable Salmonella in both pure culture and rinse water of chicken carcasses, and 10-fold lower than a conventional polymerase chain reaction coupled with PMA (PMA-PCR) targeting invA There was a high correlation (R = 0.99 to 0.976) between LAMP time threshold (T) values and viable Salmonella with a quantification range of 1.0 × 10 to 1.0 × 10 CFU/mL in pure culture and rinse water of chicken carcasses. The PMA-LAMP assay took less than 2 h to detect Salmonella contaminated in test samples. Therefore, this simple and rapid method will be a very useful tool to detect live Salmonella contamination of chicken carcasses without pre-enrichment at the slaughterhouse where sanitizing treatments are commonly used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.