Background. The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined.Methods. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM).Results. The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples.Conclusions. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures.
Background:The proinflammatory adipokine lipocalin-2 is associated with obesity-related complications, such as heart failure. Results: Lipocalin-2 induces cardiomyocyte apoptosis via elevating intracellular iron levels and mediates detrimental effects on cardiac function. Conclusion: Lipocalin-2 is an important mediator of cardiac remodeling. Significance: Regulation of cardiomyocyte apoptosis by lipocalin-2, and the mechanistic role of changes in intracellular iron, may contribute to the pathogenesis of obesity-related heart failure.
SUMMARY
The H7N9 influenza virus causes high-mortality disease in humans but no effective therapeutics are available. Here we report a human monoclonal antibody, m826, that binds to H7 hemagglutinin (HA) and protects against H7N9 infection. m826 binds to H7N9 HA with subnanomolar affinity at acidic pH and 10-fold lower affinity at neutral pH. The high-resolution (1.9 Å) crystal structure of m826 complexed with H7N9 HA indicates that m826 binds an epitope that may be fully exposed upon pH-induced conformational changes in HA. m826 fully protects mice against lethal challenge with H7N9 virus through mechanisms likely involving antibody-dependent cell-mediated cytotoxicity (ADCC). Interestingly, immunogenetic analysis indicates that m826 is a germline antibody and m826-like sequences can be identified in H7N9-infected patients, healthy adults and newborn babies. These m826 properties offer a template for H7N9 vaccine immunogens, a promising candidate therapeutic, and a tool for exploring mechanisms of virus infection inhibition by antibodies.
Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.