Previous studies showed that recombinant equine chorionic gonadotropin (rec-eCGβ/α) exhibits both follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-like activities in rat LHR- and FSHR-expressing cells. In this study, we analyzed signal transduction by eelFSHR and eelLHR upon stimulation with rec-eCGβ/α and native eCG. The cyclic adenosine monophosphate (cAMP) stimulation in CHO-K1 cells expressing eelLHR was determined upon exposure to different doses (0–1,450 ng/mL) of rec-eCGβ/α and native eCG. The EC50 values of rec-eCGβ/α and native eCG were 172.4 and 786.6 ng/mL, respectively. The activity of rec-eCGβ/α was higher than that of native eCG. However, signal transduction in the CHO PathHunter Parental cells expressing eelFSHR was not enhanced by stimulation with both agonist rec-eCGβ/α and native eCG. We concluded that rec-eCGβ/α and native eCG were completely active in cells expressing eelLHR, similar to the activity in the mammalian cells expressing LHRs. However, rec-eCGβ/α and native eCG did not invoke any signaling response in the cells expressing eelFSHR. These results suggest that eCG has a potent activity in cells expressing eelLHR. Thus, we also suggest that rec-eCGβ/α can induce eel maturation by administering gonadotropic reagents (LH), such as salmon pituitary extract.
Background Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24 h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by > 2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses. Conclusions The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.
Background Equine chorionic gonadotropin (eCG), which comprises highly glycosylated α-subunit and β-subunit, is a unique member of the glycoprotein hormone family as it elicits both follicle-stimulating hormone (FSH)-like and luteinizing hormone (LH)-like responses in non-equid species. To examine the biological function of glycosylated sites in eCG, the following glycosylation site mutants were constructed: eCGβ/αΔ56, substitution of Asn56 of α-subunit with Gln; eCGβ-D/α, deletion of the O-linked glycosylation site at the carboxyl-terminal peptide (CTP) region of the β-subunit; eCGβ-D/αΔ56, double mutant. The recombinant eCG (rec-eCG) mutants were expressed in Chinese hamster ovary suspension (CHO-S) cells. The FSH-like and LH-like activities of the mutants were examined using CHO-K1 cells expressing rat lutropin/CG receptor (rLH/CGR) and rat FSH receptor (rFSHR). Results Both rec-eCGβ/α and rec-eCGβ/αΔ56 were efficiently secreted into the CHO-S cell culture medium on day 1 post-transfection. However, the secretion of eCGβ-D/α and eCGβ-D/αΔ56, which lack approximately 12 O-linked glycosylation sites, was slightly delayed. The expression levels of all mutants were similar (200–250 mIU/mL) from days 3 to 7 post-transfection. The molecular weight of rec-eCGβ/α, rec-eCGβ/αΔ56 and rec-eCG β-D/α were in the ranges of 40–45, 37–42, and 34–36 kDa, respectively. Treatment with peptide-N-glycanase F markedly decreased the molecular weight to approximately 5–10 kDa. Rec-eCGβ/αΔ56 exhibited markedly downregulated LH-like activity. The signal transduction activity of both double mutants was completely impaired. This indicated that the glycosylation site at Asn56 of the α-subunit plays a pivotal role in the LH-like activity of eCG. Similarly, the FSH-like activity of the mutants was markedly downregulated. eCGβ-D/α exhibited markedly downregulated LH-like and FSH-like activities. Conclusions Rec-eCGβ/α exhibits potent biological activity in cells expressing rLH/CGR and rFSHR. The findings of this study suggest that the LH-like and FSH-like activities of eCG are regulated by the N-linked glycosylation site at Asn56 of the eCG α-subunit and/or by the O-linked glycosylation sites of the eCG β-subunit. These findings improved our understanding of the mechanisms underlying both LH-like and FSH-like activities of eCG.
Background:Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC).Results:R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment.The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses.Conclusions:The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.