The crystal structures of bis-pyridine stabilized iodine dications [PhI(pyr)(2)](2+) are reported as triflate salts, representing the first ligand supported iodine dications to be structurally characterized. The pyridine complexes are susceptible to ligand exchange in reaction with stronger N-based donors such as 4-dimethylaminopyridine. Attempts to extend this reactivity to N-heterocyclic carbene and phosphine ligands, as has been accomplished in the earlier p-block groups, resulted in redox chemistry, with oxidation of the ligands rather than coordination.
Powders and essential oils were prepared from the aerial parts of Cinnamomum camphora, Ocimum basilicum, Chenopodium ambrosioides, and seeds of Pimpinella anisum. Their adulticidal activities and effects on the F 1 progeny of Trogoderma granarium (Everts) and Tribolium castaneum (Herbst) were evaluated. The chemical composition of the plant oils were identified by gas chromatography (GC) and GC/mass spectrometry (MS). All of the tested botanicals showed insecticidal activities against the test insects in a dose-dependent manner with T. granarium was more susceptible to the tested plant products than T. castaneum. At a concentration of 5 g kg -1 , many of the plant powders caused 100% mortality of both insects after 14 days of exposure. The powders of C. camphora, O. basilicum, and C. ambrosioides were effective against T. granarium, while that of C. ambrosioides caused 100% adult mortality of T. castaneum under the same assays conditions. A dose of 1.50 ml cm -2 of the oils of C. camphora and O. basilicum completely controlled T. granarium, while 100% mortality of T. castaneum adults was recorded with P. anisum oil. A significant and/or complete reduction (100% inhibition) of the F 1 progeny of both insects was obtained as a result of parental exposure to the tested botanicals, especially at the highest doses applied. Botanicals under investigation showed a considerable grain protecting activity against the tested insect species and could be included in integrated pest management (IPM) strategies.
For many years, the interaction between dust particles and water molecules has been a subject of interest for the atmospheric sciences community. However, the influence of the particle size on the hygroscopicity of mineral particles is poorly evaluated. In the current study, diffused reflectance infrared Fourier transform (DRIFT) spectroscopy is used to evaluate the in situ water adsorption on natural Arizona test dust (ATD) particles. Five different ATD size fractions, 0−3, 5−10, 10−20, 20−40, and 40−80 μm, are used, corresponding to the entire range of uplifted mineral particles in the atmosphere (<100 μm). N 2 sorption measurement, particle size distribution, and elemental analyses are performed to determine the physicochemical properties of the samples. The water adsorption experiments are conducted in an optical cell under flow conditions at room temperature and under the relative humidity (RH) range of 2− 90%. Experimental results are simulated with a modified three-parameter Brunauer−Emmett−Teller (BET) equation. Water monolayers are found to be formed at 13
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.