Background The memory impairments in mild cognitive impairment (MCI) can be classified into encoding (EF) and retrieval (RF) failure, which can be affected by underlying pathomechanism. We explored the differences structurally and functionally. Methods We compared quantitative electroencephalography (qEEG) power spectra and connectivity between 87 MCI patients with EF and 78 MCI with RF using iSyncBrain® (iMediSync Inc., Republic of Korea) (https://isyncbrain.com/). Voxel-based morphometric analysis of the gray matter (GM) in the MCI groups and 71 cognitive normal controls was also done using the Computational Anatomy Toolbox 12 (http://www.neuro.uni-jena.de/cat/). Results qEEG showed higher frontal theta and lower beta2 band power, and higher theta connectivity in the EF. There was no statistically significant difference in GM volume between the EF and RF. However, when compared to normal control, GM volume reductions due to EF in the left thalamus and bilateral hippocampi and reductions due to RF in the left thalamus, right superior frontal lobe, right superior temporal lobe, and right middle cingulum were observed (p < 0.05, family-wise error correction). Conclusions MCI differs functionally and structurally according to their specific memory impairments. The EF findings are structurally and functionally more consistent with the prodromal Alzheimer’s disease stage than the RF findings. Since this study is a cross-sectional study, prospective follow-up studies are needed to investigate whether different types of memory impairments can predict the underlying pathology of amnestic MCI. Additionally, insufficient sample size may lead to ambiguous statistical findings in direct comparisons, and a larger patient cohort could more robustly identify differences in GM volume reductions between the EF and the RF group.
Background: The memory impairments in mild cognitive impairment (MCI) can be classified into encoding (EF) and retrieval (RF) failure, which can be affected by underlying pathomechanism. We explored the differences structurally and functionally.Methods: We compared quantitative electroencephalography (qEEG) power spectra and connectivity between 87 MCI patients with EF and 78 MCI with RF using iSyncBrain ™ (iMediSync, Inc., Korea) (https://isyncbrain.com/). Voxel-based morphometric analysis of the gray matter (GM) in the MCI groups and 71 cognitive normal controls were also done using the Computational Anatomy Toolbox 12 (http://www.neuro.uni-jena.de/cat/).Results: qEEG showed higher frontal theta and lower beta2 band power and higher theta and lower beta connectivity in the EF. There was no statistically significant difference in GM volume between the EF and RF. However, when compared to normal control, GM volume reductions due to EF in the left thalamus and bilateral hippocampi and reductions due to RF in the left thalamus, right superior frontal lobe, right superior temporal lobe, and right middle cingulum were observed ( p < 0.05, family-wise error correction). Conclusions: MCI differs functionally and structurally according to their specific memory impairments. The EF findings are structurally and functionally more consistent with the prodromal Alzheimer's disease stage than the RF findings. Since this study is a cross-sectional study, prospective follow-up studies are needed to investigate whether different types of memory impairments can predict the underlying pathology of amnestic MCI. Additionally, insufficient sample size may lead to ambiguous statistical findings in direct comparisons, a larger patient cohort could more robustly identify differences in GM volume reductions between the EF and the RF group.
Background: The memory impairments in mild cognitive impairment (MCI) can be classified into encoding (EF) and retrieval (RF) failure, which can be affected by underlying pathomechanism. We explored the differences structurally and functionally.Methods: We compared quantitative electroencephalography (qEEG) power spectra and connectivity between 87 MCI patients with EF and 78 MCI with RF using iSyncBrain ™ (iMediSync, Inc., Korea) (https://isyncbrain.com/). Voxel-based morphometric analysis of the gray matter (GM) in the MCI groups and 71 cognitive normal controls were also done using the Computational Anatomy Toolbox 12 (http://www.neuro.uni-jena.de/cat/).Results: qEEG showed higher frontal theta and lower beta2 band power, and higher theta connectivity in the EF. There was no statistically significant difference in GM volume between the EF and RF. However, when compared to normal control, GM volume reductions due to EF in the left thalamus and bilateral hippocampi and reductions due to RF in the left thalamus, right superior frontal lobe, right superior temporal lobe, and right middle cingulum were observed ( p < 0.05, family-wise error correction).Conclusions: MCI differs functionally and structurally according to their specific memory impairments. The EF findings are structurally and functionally more consistent with the prodromal Alzheimer's disease stage than the RF findings. Since this study is a cross-sectional study, prospective follow-up studies are needed to investigate whether different types of memory impairments can predict the underlying pathology of amnestic MCI. Additionally, insufficient sample size may lead to ambiguous statistical findings in direct comparisons, a larger patient cohort could more robustly identify differences in GM volume reductions between the EF and the RF group.
Background: The memory impairments in mild cognitive impairment (MCI) can be classified into encoding (EF) and retrieval (RF) failure, which can be affected by underlying pathomechanism. We explored the differences structurally and functionally.Methods: We compared quantitative electroencephalography (qEEG) power spectra and connectivity between 87 MCI patients with EF and 78 MCI with RF using iSyncBrainÒ (iMediSync, Inc., Korea) (https://isyncbrain.com/). Voxel-based morphometric analysis of the gray matter (GM) in the MCI groups and 71 cognitive normal controls were also done using the Computational Anatomy Toolbox 12 (http://www.neuro.uni-jena.de/cat/).Results: qEEG showed higher frontal theta and lower beta2 band power, and higher theta connectivity in the EF. There was no statistically significant difference in GM volume between the EF and RF. However, when compared to normal control, GM volume reductions due to EF in the left thalamus and bilateral hippocampi and reductions due to RF in the left thalamus, right superior frontal lobe, right superior temporal lobe, and right middle cingulum were observed ( p < 0.05, family-wise error correction). Conclusions: MCI differs functionally and structurally according to their specific memory impairments. The EF findings are structurally and functionally more consistent with the prodromal Alzheimer's disease stage than the RF findings. Since this study is a cross-sectional study, prospective follow-up studies are needed to investigate whether different types of memory impairments can predict the underlying pathology of amnestic MCI. Additionally, insufficient sample size may lead to ambiguous statistical findings in direct comparisons, a larger patient cohort could more robustly identify differences in GM volume reductions between the EF and the RF group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.