The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allowsa timely supplying of phage therapy products for ‘personalized therapy’ or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.
Chronic wounds that fail to heal are a common complication of diabetes mellitus and the most common precipitating reason for nontraumatic lower limb amputation. Unfortunately, the bacterial species that cause these infections are becoming more resistant to antibiotics, making them increasingly difficult to treat. We assessed the feasibility of combating chronic bacterial infections with a topically delivered bacteriophage cocktail in two animal models of diabetes mellitus. Microbiological, planimetric, and histological parameters were compared in debrided infected wounds with or without topical bacteriophage treatment. We determined that bacteriophage treatment effectively decreased bacterial colony counts and improved wound healing, as indicated by smaller epithelial and dermal gaps, in Staphylococcus aureus and Pseudomonas aeruginosa infections but was not as effective against Acinetobacter baumannii. Although the improvements were more significant in the rodent model than in the porcine model, our results suggest that topically administered bacteriophage treatment may be effective in resolving chronic infections, especially when applied in conjunction with wound debridement. These findings have important implications for the feasibility of using topical antimicrobial therapies to safely treat chronic infections in diabetes mellitus patients.
Hybridoma fusion technology, proposed by Köhler and Milstein in 1975, started major developments in the field of monoclonal antibodies (mAbs). During the following 2 decades, their high potential as laboratory tools was rapidly exploited for biotechnology and biomedical applications. Today, mAbs represent over 30% of all biological proteins undergoing clinical trials and are the second largest class of biodrugs after vaccines. With the help of antibody engineering, mAbs have been reduced in size, rebuilt into multivalent molecules, and conjugated with drugs, toxins, or radioisotopes for the treatment of cancer, autoimmune disorders, graft rejection, and infectious diseases. Additionally, in the past few years, important advances have been made in the design, selection, and production of these new types of engineered antibodies. The present review focuses on the structural and functional characteristics of mAbs and their fragments, and also provides a walk through the most important methods used in antibody selection. In addition, the recent trends in antibody engineering for improving antibody clinical efficacy are also reviewed.
Lentiviral vectors are among the most efficient tools for gene delivery into mammalian cells. A major goal of lentiviral gene delivery systems is to develop vectors that can efficiently target specific cell types. In the present work, we attempt to generate viral particles for targeting gene delivery. We have used CCR5-positive cells as the target for our strategy. Therefore, we developed a novel Sindbis pseudotyped lentiviral vector where the Sindbis receptor binding envelope protein was modified to directly encode a single-chain antibody fragment (scFv) against the CCR5 chemokine receptor. We have generated two chimeric scFv-Sindbis envelopes, varying the length of the peptide linker that connects the heavy chain and light chain of anti-CCR5 scFv. The two chimeric scFv-Sindbis envelopes were successfully incorporated into lentiviral-derived vectors, and the resulting pseudotyped viral particles showed specific targeting to CCR5-expressing cells. However, our data demonstrate that the length of the peptide linker significantly affects the efficiency of infection. Pseudotyped viral particles, which display single-chain antibody fragments with longer peptide linkers, allowed higher titers of infection. The present study can be a model strategy for specific gene delivery mediated by lentiviral vectors pseudotyped with Sindbis envelope displaying scFv that recognizes specific cellular surface proteins. Furthermore, this strategy has the potential to become a powerful approach for targeting gene delivery in anti- HIV gene therapy due to the important role of CCR5 expression in disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.