Cow’s milk and dairy are commonly consumed foods in the human diet and contribute to maintaining a healthy nutritional state, providing unique sources of energy, calcium, protein, and vitamins, especially during early childhood. Milk formula is usually made from cow’s milk and represents the first food introduced into an infant’s diet when breastfeeding is either not possible or insufficient to cover nutritional needs. Very recently, increased awareness of cow’s milk protein allergy and intolerance, and higher preference to vegan dietary habits have influenced parents towards frequently choosing cows’ milk substitutes for children, comprising other mammalian milk types and plant-based milk beverages. However, many of these milk alternatives do not necessarily address the nutritional requirements of infants and children. There is a strong need to promote awareness about qualitative and quantitative nutritional compositions of different milk formulas, in order to guide parents and medical providers selecting the best option for children. In this article, we sought to review the different compositions in terms of macronutrients and micronutrients of milk from different mammalian species, including special milk formulas indicated for cow’s milk allergy, and of plant-based milk alternatives.
The COVID-19 pandemic has surprised the entire population. The world has had to face an unprecedented pandemic. Only, Spanish flu had similar disastrous consequences. As a result, drastic measures (lockdown) have been adopted worldwide. Healthcare service has been overwhelmed by the extraordinary influx of patients, often requiring high intensity of care. Mortality has been associated with severe comorbidities, including chronic diseases. Patients with frailty were, therefore, the victim of the SARS-COV-2 infection. Allergy and asthma are the most prevalent chronic disorders in children and adolescents, so they need careful attention and, if necessary, an adaptation of their regular treatment plans. Fortunately, at present, young people are less suffering from COVID-19, both as incidence and severity. However, any age, including infancy, could be affected by the pandemic. Based on this background, the Italian Society of Pediatric Allergy and Immunology has felt it necessary to provide a Consensus Statement. This expert panel consensus document offers a rationale to help guide decision-making in the management of children and adolescents with allergic or immunologic diseases.
Phospholipases are produced from bacterial pathogens causing very different diseases. One of the most intriguing aspects of phospholipases is their potential to interfere with cellular signaling cascades and to modulate the host-immune response. Here, we investigated the role of the innate and acquired immune responses elicited by Chlamydophila pneumoniae phospholipase D (CpPLD) in the pathogenesis of atherosclerosis. We evaluated the cytokine and chemokine production induced by CpPLD in healthy donors' monocytes and in vivo activated T cells specific for CpPLD that infiltrate atherosclerotic lesions of patients with C. pneumoniae antibodies. We also examined the helper function of CpPLD-specific T cells for monocyte matrix metalloproteinase (MMP)-9 and tissue factor (TF) production as well as the CpPLD-induced chemokine expression by human venular endothelial cells (HUVECs). We report here that CpPLD is a TLR4 agonist able to induce the expression of IL-23, IL-6, IL-1 beta, TGF-beta, and CCL-20 in monocytes, as well as CXCL-9, CCL-20, CCL-4, CCL-2, ICAM-1, and VCAM-1 in HUVECs. Plaque-derived T cells produce IL-17 in response to CpPLD. Moreover, CpPLD-specific CD4(+) T lymphocytes display helper function for monocyte MMP-9 and TF production. CpPLD promotes Th17 cell migration through the induction of chemokine secretion and adhesion molecule expression on endothelial cells. These findings indicate that CpPLD is able to drive the expression of IL-23, IL-6, IL-1 beta, TGF-beta, and CCL-20 by monocytes and to elicit a Th17 immune response that plays a key role in the genesis of atherosclerosis
Recurrent respiratory infections (RRIs) are a common clinical condition in children, in fact about 25% of children under 1 year and 6% of children during the first 6 years of life have RRIs. In most cases, infections occur with mild clinical manifestations and the frequency of episodes tends to decrease over time with a complete resolution by 12 years of age. However, RRIs significantly reduce child and family quality of life and lead to significant medical and social costs.Despite the importance of this condition, there is currently no agreed definition of the term RRIs in the literature, especially concerning the frequency and type of infectious episodes to be considered. The aim of this consensus document is to propose an updated definition and provide recommendations with the intent of guiding the physician in the complex process of diagnosis, management and prevention of RRIs.
BAFF is a crucial cytokine that affects the activity of both innate and adaptive immune cells. It promotes the expansion of Th17 cells in autoimmune disorders. With this study, we investigated the BAFF/Th17 responses in Helicobacter pylori–induced gastritis in humans. Our results show that the mucosa from Helicobacter+ patients with chronic gastritis is enriched in IL-17 and BAFF, whereas the two cytokines are weakly expressed in Helicobacter− patients with chronic gastritis; moreover, the expression of both BAFF and IL-17 decreases after bacteria eradication. We demonstrate that BAFF accumulates in macrophages in vivo and that it is produced by monocyte-derived macrophages in vitro, after Helicobacter stimulation. Application of BAFF on monocytes triggers the accumulation of reactive oxygen species that are crucial for the release of pro-Th17 cytokines, such as IL-23, IL-1β, and TGF-β. Moreover, BAFF directly promotes the differentiation of Th17 cells. In conclusion, our results support the notion that an axis BAFF/Th17 exists in chronic gastritis of Helicobacter+ patients and that its presence strictly depends on the bacterium. Moreover, we demonstrated that BAFF is able to drive Th17 responses both indirectly, by creating a pro-Th17 cytokine milieu through the involvement of innate immune cells, and directly, via the differentiation of T cells toward the specific profile. The results obtained in this study are of great interest for Helicobacter-related diseases and the development of novel therapeutic strategies based on the inhibition of the BAFF/IL-17 response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.