Spherical and monodispersed sub‐micrometer sized particles of organic–inorganic hybrids were prepared by means of a sol–gel non‐emulsion method using the biopolymer κ‐carrageenan and the alkoxysilane 3‐isocyanatopropyltriethoxysilane (ICPTES). The structural characterization of the carrageenan–silica hybrid particles was performed by using FTIR spectroscopy and solid‐state 29Si and 13C NMR spectroscopy and confirmed that κ‐carrageenan was covalently linked to the siliceous network via urethane bonds. Zeta‐potential measurements indicate the hybrids were functionalized on the surface with sulfonate groups from the polysaccharide. These hybrids display thermal sensitivity, which is of great relevance for biomedical applications such as drug encapsulation and thermally controlled drug‐delivery systems.
Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g−1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.