Background: Accurate segmentation of pulmonary nodules on computed tomography (CT) scans plays a crucial role in the evaluation and management of patients with suspicion of lung cancer (LC). When performed manually, not only the process requires highly skilled operators, but is also tiresome and timeconsuming. To assist the physician in this task several automated and semi-automated methods have been proposed in the literature. In recent years, in particular, the appearance of deep learning has brought about major advances in the field.Methods: Twenty-four (12 conventional and 12 based on deep learning) semi-automated-'one-click'methods for segmenting pulmonary nodules on CT were evaluated in this study. The experiments were carried out on two datasets: a proprietary one (383 images from a cohort of 111 patients) and a public one (259 images from a cohort of 100). All the patients had a positive transcript for suspect pulmonary nodules. Results:The methods based on deep learning clearly outperformed the conventional ones. The best performance [Sørensen-Dice coefficient (DSC)] in the two datasets was, respectively, 0.853 and 0.763 for the deep learning methods, and 0.761 and 0.704 for the traditional ones.Conclusions: Deep learning is a viable approach for semi-automated segmentation of pulmonary nodules on CT scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.