Turning graphene magnetic is a promising challenge to make it an active material for spintronics. Predictions state that graphene structures with specific shapes can spontaneously develop magnetism driven by Coulomb repulsion of π-electrons, but its experimental verification is demanding. Here, we report on the observation and manipulation of individual magnetic moments in graphene open-shell nanostructures on a gold surface. Using scanning tunneling spectroscopy, we detect the presence of single electron spins localized around certain zigzag sites of the carbon backbone via the Kondo effect. We find near-by spins coupled into a singlet ground state and quantify their exchange interaction via singlet-triplet inelastic electron excitations. Theoretical simulations picture how electron correlations result in spin-polarized radical states with the experimentally observed spatial distributions. Extra hydrogen atoms bound to radical sites quench their magnetic moment and switch the spin of the nanostructure in half-integer amounts. Our work demonstrates the intrinsic π-paramagnetism of graphene nanostructures.
Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional π-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergo a topological phase transition. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunneling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. Our findings represent a new platform for producing topologically protected spin states and demonstrate the potential of connecting chiral edge and defect structure with band engineering.
Triangulene nanographenes are open‐shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long‐sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl‐anthracene cyclic hexamer and the on‐surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π‐electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.
Open-shell
graphene nanoribbons have become promising candidates
for future applications, including quantum technologies. Here, we
characterize magnetic states hosted by chiral graphene nanoribbons
(chGNRs). The substitution of a hydrogen atom at the chGNR edge by
a ketone effectively adds one p
z
electron to the π-electron network, producing an unpaired
π-radical. A similar scenario occurs for regular ketone-functionalized
chGNRs in which one ketone is missing. Two such radical states can
interact via exchange coupling, and we study those interactions as
a function of their relative position, which includes a remarkable
dependence on the chirality, as well as on the nature of the surrounding
ribbon, that is, with or without ketone functionalization. Besides,
we determine the parameters whereby this type of system with oxygen
heteroatoms can be adequately described within the widely used mean-field
Hubbard model. Altogether, we provide insight to both theoretically
model and devise GNR-based nanostructures with tunable magnetic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.