Alzheimer's disease (AD) has a devastating impact on aged people worldwide. Although sophisticated and advanced molecular methods have been developed for its diagnosis since early phases, pharmacological treatment still represents an unresolved topic. The more the disease progresses, the more the uneffectiveness of antidementia drugs emerges. New and encouraging results from experimental works indicate that glutamate pathway may play a substantial role in the pathogenesis since early stages of the disease. Several experimental data together with the clinical use of the uncompetitive N-methyl-d-aspartate (NMDA) antagonist memantine strengthen this idea. Unfortunately, definitive data on the glutamatergic transmission involvement in AD are still incomplete. Moreover, clinical results indicate only temporarily limited effects of memantine. Currently, memantine is indicated for moderate-to-severe cases of AD, an indication that may limit its efficacy and impact on Alzheimer's dementia. The association of memantine with the acetylcholinesterase inhibitor drugs used to treat dementia symptoms appears to be beneficial, in both experimental and clinical studies. Because cholinergic and glutamatergic dysfunction occurs early in AD, the coadministration of appropriate treatment in early stages of the disease might represent a valid option from the beginning of cognitive decline. Moreover, to better evaluate drug efficacy, the association of the recently introduced biomarkers with a clinical AD profile should be considered an aim to pursue.
People with Alzheimer’s disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects. Newer compounds and techniques, such as gene editing via viral vectors or brain stimulation, also show promise. Diagnostic challenges include identifying best biomarkers for measuring sub-clinical epileptiform discharges. Determining the timing of any intervention is critical and future trials will need to carefully stratify participants with respect to the phase of disease pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.