The wastewater quality index (WWQI) is one of the most significant methods of presenting meaningful values that reflect a fundamental characteristic of wastewater. Therefore, this study was performed to develop a prediction approach using WWQI for a regional wastewater treatment plant (WWTP) in Melaka, Malaysia. The regional system of WWTP provides a huge amount of registered data due to the many parameters recorded daily. A multivariate statistical analysis approach was applied to analyze the database. In this approach, principal component analysis (PCA) was used to reduce the dimensionality of datasets obtained from the field municipal WWTP, and multiple linear regression (MLR) was used to predict the performance of WWQI. Seven principal component analyses were derived where the eigenvalue was above 1.0, explaining 71.01% of the variance. A linear relationship was observed (R2 = 0.85), p-value < 0.05, and residual values were uniformly distributed above and below the zero baselines. Therefore, the coefficients of the WWQI model are directly dependent on influent biological oxygen demand (BOD), effluent BOD, influent chemical oxygen demand (COD), and effluent COD values. The experimental results showed that the model performed well and can be used to predict WWQI for each WWTP individually and provide better achievements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.