Chronic inflammation represents a central component in the pathogenesis of Alzheimer's disease (AD). Recent work suggests that breaking immune tolerance by Programmed cell Death-1 (PD1) checkpoint inhibition produces an IFN-γ-dependent systemic immune response, with infiltration of the brain by peripheral myeloid cells and neuropathological as well as functional improvements even in mice with advanced amyloid pathology (Baruch et al., (): Nature Medicine, 22:135-137). Immune checkpoint inhibition was therefore suggested as potential treatment for neurodegenerative disorders when activation of the immune system is appropriate. Because a xenogeneic rat antibody (mAb) was used in the study, whether the effect was specific to PD1 target engagement was uncertain. In the present study we examined whether PD1 immunotherapy can lower amyloid-β pathology in a range of different amyloid transgenic models performed at three pharmaceutical companies with the exact same anti-PD1 isotype and two mouse chimeric variants. Although PD1 immunotherapy stimulated systemic activation of the peripheral immune system, monocyte-derived macrophage infiltration into the brain was not detected, and progression of brain amyloid pathology was not altered. Similar negative results of the effect of PD1 immunotherapy on amyloid brain pathology were obtained in two additional models in two separate institutions. These results show that inhibition of PD1 checkpoint signaling by itself is not sufficient to reduce amyloid pathology and that additional factors might have contributed to previously published results (Baruch et al., (): Nature Medicine, 22:135-137). Until such factors are elucidated, animal model data do not support further evaluation of PD1 checkpoint inhibition as a therapeutic modality for Alzheimer's disease.
Glycine, an important inhibitory neurotransmitter in the mammalian central nervous system (CNS), has been shown to modulate peripheral immune cell responses. In that respect, glycine levels are increased in several neuroinflammatory disorders, like amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). In this study, we show that glycine modulates macrophage effector functions implicated in CNS inflammation and in other related inflammatory conditions. We demonstrate that glycine does not affect the production of reactive oxygen species, but stimulates myelin phagocytosis and the production of the pro-inflammatory mediators nitric oxide (NO) and tumor necrosis factor (TNF)-α by rat macrophages. These effects of glycine are not mediated by the glycine receptor (GlyR) or by glycine transporters (GlyTs), since neither the GlyR antagonist strychnine, nor the antagonist of GlyT1 (ALX5407) reverse the observed effects. In contrast, 2-aminoisobutyric acid, a substrate of neutral amino acid transporters (NAATs), inhibits the glycine-mediated enhancement of myelin phagocytosis as well as of NO and TNF-α production. In conclusion, our findings demonstrate that glycine modulates macrophage function through activation of NAATs. Glycine may thereby influence immunological processes in inflammatory diseases involving macrophage activation and demyelination, including MS, and related conditions associated with altered glycine levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.