The clinical use of doxorubicin, an effective chemotherapeutic is hampered by the development of irreversible cardiotoxicity. Here we test time-frequency analysis of heart rate (HR) variability (HRV) for early detection of doxorubicin-induced cardiotoxicity. Experiments were conducted in adult male Wistar rats treated for 15 days with doxorubicin (DOXO, total dose 15 mg kg(-1), i.p.) or saline (CONT). DOXO rats exhibited cardiotoxicity confirmed by histological examination without developing heart failure as estimated by echocardiography. However, HR variability increase reflected subtle microscopic changes of cardiac toxicity in DOXO rats. The results recommend time-frequency analysis of HRV for early detection of doxorubicin-induced cardiomyopathy.
Conjugation of Doxorubicin (DOX) to N-(2-hydroxypropyl) methylacrylamide copolymer (HPMA) has significantly reduced the DOX-associated cardiotoxicity. However, the reports on the impact of HPMA–DOX conjugates on the cardiovascular system such as blood pressure (BP) and heart rate (HR) were in restrained animals using tail cuff and/or other methods that lacked the resolution and sensitivity. Herein, we employed radiotelemetric-spectral-echocardiography approach to further understand the in vivo cardiovascular hemodynamics and variability post administration of free DOX and HPMA–DOX. Rats implanted with radio-telemetry device were administered intravenously with DOX (5 mg/kg), HPMA–DOX (5 mg DOX equivalent/kg) and HPMA copolymer and subjected to continuous cardiovascular monitoring and echocardiography for 140 days. We found that DOX-treated rats had ruffled fur, reduced body weight (BW) and a low survival rate. Although BP and HR were normal, spectral analysis indicated that their BP and HR variabilities were reduced. All rats exhibited typical signs of cardiotoxicity at histopathology. In contrast, HPMA–DOX rats gained weight over time and survived. Although BP, HR and related variabilities were unaffected, the left ventricular end diastolic volume (EDV) of these rats, as well as of the HPMA copolymer-treated rats, was found increased at the end of observation period. Additionally, HPMA copolymer caused microscopic injury of the heart tissue. All of these suggest the necessity of caution when employing HPMA as carrier for prolonged drug delivery. The current study also indicates the potential of radiotelemetric-spectral-echocardiography approach for improved preclinical cardiovascular risk assessment of polymer–drug conjugate and other nano-sized-drug constructs.
AimTo elucidate whether Raman spectroscopy aided by extensive spectral database and neural network analysis can be a fast and confident biomarking tool for the diagnosis of various types of cancer.MethodsStudy included 27 patients with 11 different malignant tumors. Using Raman microscopy (RM) a total of 540 Raman spectra were recorded from histology specimens of both tumors and surrounding healthy tissues. Spectra were analyzed using the principal component analysis (PCA) and results, along with histopathology data, were used to train the neural network (NN) learning algorithm. Independent sets of spectra were used to test the accuracy of PCA/NN tissue classification.ResultsThe confident tumor identification for the purpose of medical diagnosis has to be performed by taking into account the whole spectral shape, and not only particular spectral bands. The use of PCA/NN analysis showed overall sensitivity of 96% with 4% false negative tumor classification. The specificity of distinguishing tumor types was 80%. These results are comparable to previously published data where tumors of only one tissue type were examined and can be regarded satisfactorily for a relatively small database of Raman spectra used here.ConclusionIn vitro RM combined with PCA/NN is an almost fully automated method for histopathology at the level of macromolecules. Supported by an extensive tumor spectra database, it could become a customary histological analysis tool for fast and reliable diagnosis of different types of cancer in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.