In contrast to most bacteria, the mycobacterial F1FO‐ATP synthase (α3:β3:γ:δ:ε:a:b:b’:c9) does not perform ATP hydrolysis‐driven proton translocation. Although subunits α, γ and ε of the catalytic F1‐ATPase component α3:β3:γ:ε have all been implicated in the suppression of the enzyme’s ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1‐ATPase (MsF1‐ATPase), whose 3D low‐resolution structure is presented, and its ε‐free form MsF1αβγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε’s suppression of ATPase activity. Deletion of four amino acids at ε’s N terminus, mutant MsF1αβγεΔ2‐5, revealed similar ATP hydrolysis as MsF1αβγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N‐terminal ε‐mutants, the importance of the first N‐terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε’s C‐terminal mutant MsF1αβγεΔ121 and MsF1αβγεΔ103‐121 with deletion of the C‐terminal residue D121 and the two C‐terminal ɑ‐helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3β3‐headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε‐targeting F‐ATP synthase inhibitor.
Metabolic disorders in T2DM generate multiple sources of free radicals and oxidative stress that accelerate nonenzymatic degenerative protein modifications (DPMs) such as protein oxidation, disrupt redox signaling and physiological function, and remain a major risk factor for clinical diabetic vascular complications. in order to identify potential oxidative biomarkers in the blood plasma of patients with T2DM, we used LC-MS/MS-based proteomics to profile plasma samples from patients with T2DM and healthy controls. The results showed that human serum albumin (HSA) is damaged by irreversible cysteine trioxidation, which can be a potential oxidative stress biomarker for the early diagnosis of T2DM. The quantitative detection of site-specific thiol trioxidation is technically challenging; thus, we developed a sensitive and selective LC-MS/MS workflow that has been used to discover and quantify three unique thiol-trioxidized HSA peptides, ALVLIAFAQYLQQC (SO3H) PFEDHVK (m/z 1241.13), YIC (SO3H) ENQDSISSK (m/z 717.80) and RPC (SO3H) FSALEVDETYVPK (m/z 951.45), in 16 individual samples of healthy controls (n = 8) and individuals with diabetes (n = 8). Targeted quantitative analysis using multiple reaction monitoring mass spectrometry revealed impairment of the peptides with m/z 1241.13, m/z 717.80 and m/z 951.45, with significance (P < 0.02, P < 0.002 and P < 0.03), in individuals with diabetes. the results demonstrated that a set of three HSA thiol-trioxidized peptides, which are irreversibly oxidatively damaged in HSA in the plasma of patients with T2DM, can be important indicators and potential biomarkers of oxidative stress in T2DM.open Scientific RepoRtS | (2020) 10:6475 | https://doi.org/10.1038/s41598-020-62341-zwww.nature.com/scientificreports www.nature.com/scientificreports/ neuropathy and retinopathy 5 . However, measuring oxidative stress is challenging since reactive oxygen species (ROS) or other metabolic products are extremely unstable; hence, the gold standard to measure oxidative stress has not yet been established. As oxidative stress is a potential indicator to predict diabetes progression and is also beneficial for longitudinal follow-up to evaluate the response to treatment, there remains an unmet need to develop a reliable biomarker that can be used to estimate oxidative stress quantitatively.Modified proteins are prospective biomarkers for both diagnoses and assessment of disease treatment; hence, the American Diabetes Association 6 and the World Health Organization 7 approved the use of glycated hemoglobin A1c (HbA1c) in diagnosing DM. Modified proteins such as plasma glycoproteins including human epidermal growth factor receptor 2 (HER2) in breast cancer, prostate-specific antigen (PSA) in prostate cancer, carcinoembryonic antigen (CEA) in colorectal cancer, cancer antigen 125 (CA-125) in ovarian cancer, alpha-fetoprotein in hepatocellular carcinoma have been approved by the Food and Drug Administration (FDA) as a potential diagnostic biomarker of various cancers 8 . Further, the role of DPMs, su...
Background: Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. Methods: We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet–induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. Results: Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet–induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. Conclusions: These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.