Objective: To analyze the initial changes in salivary levels of periodontal pathogens after orthodontic treatment with fixed appliances. Materials and Methods: The subjects consisted of 54 adult patients. The Simplified Oral Hygiene Index, Plaque Index, and Gingival Index were measured as periodontal parameters. Both the plaque and gingival indexes were obtained from the central and lateral incisors and first molars of both arches. Whole saliva and periodontal parameters were obtained at the following four time points: immediately before debonding (T1), 1 week after debonding (T2), 5 weeks after debonding (T3), and 13 weeks after debonding (T4). Repeated measures analysis of variance was used to determine salivary bacterial levels and periodontal parameters among the four time points after quantifying salivary levels of Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria using the real-time polymerase chain reaction. Results: All periodontal parameters were significantly decreased immediately after debonding (T2). The salivary levels of total bacteria and Pg were decreased at T3, while Pi and Tf levels were decreased at T4. However, the amount of Aa and Fn remained at similar levels in saliva during the experimental period. Interestingly, Aa and Fn were present in saliva at higher levels than were Pg, Pi, and Tf. Conclusion: The higher salivary levels of Aa and Fn after debonding suggests that the risk of periodontal problems cannot be completely eliminated by the removal of fixed orthodontic appliances during the initial retention period, despite improved oral hygiene. (Angle Orthod. 2016;86:998-1003.)
Objective: To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods: The samples were classified into three groups of bracket materials: 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A realtime polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results: Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions: The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.