Tools have been used for millions of years to augment the capabilities of the human body, allowing us to accomplish tasks that would otherwise be difficult or impossible. Powered exoskeletons and other assistive devices are sophisticated modern tools that have restored bipedal locomotion in individuals with paraplegia and have endowed unimpaired individuals with superhuman strength. Despite these successes, designing assistive devices that reduce energy consumption during running remains a substantial challenge, in part because these devices disrupt the dynamics of a complex, finely tuned biological system. Furthermore, designers have hitherto relied primarily on experiments, which cannot report muscle-level energy consumption and are fraught with practical challenges. In this study, we use OpenSim to generate muscle-driven simulations of 10 human subjects running at 2 and 5 m/s. We then add ideal, massless assistive devices to our simulations and examine the predicted changes in muscle recruitment patterns and metabolic power consumption. Our simulations suggest that an assistive device should not necessarily apply the net joint moment generated by muscles during unassisted running, and an assistive device can reduce the activity of muscles that do not cross the assisted joint. Our results corroborate and suggest biomechanical explanations for similar effects observed by experimentalists, and can be used to form hypotheses for future experimental studies. The models, simulations, and software used in this study are freely available at simtk.org and can provide insight into assistive device design that complements experimental approaches.
Abstract-In this paper, we formulate a novel hierarchical controller for walking of torque controlled humanoid robots. Our method uses an online whole body optimization approach which generates joint torques, given Cartesian accelerations of different points on the robot. Over such variable translation, we can plan our desired foot trajectories in Cartesian space between starting and ending positions of the foot on the ground. On top level, we use the simplified Linear Inverted Pendulum Model to predict the future motion of the robot. With LIPM, we derive a formulation where the whole system is described by the state of center of mass and footstep locations serve as discrete inputs to this linear system. We then use model predictive control to plan optimal future footsteps which resemble a reference plan, given desired sagittal and steering velocities determined by the high-end user. Using simulations on a child-size torque controlled humanoid robot, the method tolerates various disturbances such as external pushes, sensor noises, model errors and delayed communication in the control loop. It can perform robust walking over slopes and uneven terrains blindly and turn rapidly at the same time. Our generic dynamics model-based method does not depend on any off-line optimization, being suitable for typical torque controlled humanoid robots.
Abstract-In this paper, we propose a novel walking method for torque controlled robots. The method is able to produce a wide range of speeds without requiring off-line optimizations and retuning of parameters. We use a quadratic whole-body optimization method running online which generates joint torques, given desired Cartesian accelerations of center of mass and feet. Using a dynamics model of the robot inside this optimizer, we ensure both compliance and tracking, required for fast locomotion. We have designed a foot-step planner that uses a linear inverted pendulum as simplified robot internal model. This planner is formulated as a quadratic convex problem which optimizes future steps of the robot. Fast libraries help us performing these calculations online. With very few parameters to tune and no perception, our method shows notable robustness against strong external pushes, relatively large terrain variations, internal noises, model errors and also delayed communication.
Abstract-We present a modular controller for quadruped locomotion over unperceived rough terrain. Our approach is based on a computational Central Pattern Generator (CPG) model implemented as coupled nonlinear oscillators. Stumbling correction reflex is implemented as a sensory feedback mechanism affecting the CPG. We augment the outputs of the CPG with virtual model control torques responsible for posture control. The control strategy is validated on a 3D forward dynamics simulated quadruped robot platform of about the size and weight of a cat. To demonstrate the capabilities of the proposed approach, we perform locomotion over unperceived uneven terrain and slopes, as well as situations facing external pushes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.