Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Green nanotechnology stands amongst the leading giants of innovation for the twenty first century technological advances. More interesting, is the use of natural products as reducing agents. These could be recyclable materials from fruits and vegetables to produce nanoparticles (NPs) with novel properties. In the current study, silver NPs (AgNPs) were synthesized using the water extracts from the peel and flesh of two Pyrus communis L. cultivars, namely, the Forelle (Red) Pears (RPE) and Packham Triumph (Green) Pears (GPE). The AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), High Resolution Transmission Electron Microscopy (HRTEM) and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the AgNPs were evaluated using agar well diffusion and microdilution assays. The cytotoxicity of the AgNPs was investigated on a rat macrophage (RAW 264.7) cells using MTT assay. Both the RPE and GPE were capable of synthesizing the AgNPs at high temperatures (70 and 100 C). The AgNPs exhibited antibacterial activity against the test strains, and also had low toxicity towards the RAW 264.7 cells. Thus, the synthesized AgNPs have a potentially viable use in bio-applications for treatment of bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.