For nearly two decades, the field of plasmonics1 - which studies the coupling of electromagnetic waves to the motion of free electrons in a metal2 - has sought to realize subwavelength optical devices for information technology3–6, sensing7,8, nonlinear optics9,10, optical nanotweezers11 and biomedical applications12. Although the heat generated by ohmic losses is desired for some applications (e.g. photo-thermal therapy), plasmonic devices for sensing and information technology have largely suffered from these losses inherent to metals13. This has led to a widespread stereotype that plasmonics is simply too lossy to be practical. Here, we demonstrate that these losses can be bypassed by employing “resonant switching”. In the proposed approach, light is only coupled to the lossy surface plasmon polaritons in the device’s off-state (in resonance) where attenuation is desired to ensure large extinction ratios and facilitate sub-ps switching. In the on state (out of resonance), light is prevented from coupling to the lossy plasmonic section by destructive interference. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses (2.5 dB), high-speed operation (>>100 GHz), good energy efficiency (12 fJ/bit), low thermal drift (4‰ K-1), and a compact footprint (sub-λ radius of 1 μm) can be realized within a single device. Our result illustrates the potential of plasmonics to render fast and compact on-chip sensing and communications technologies.
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons-elementary polar excitations bound to surfaces and interfaces of nanostructured good metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects such as quantum plasmonics based on quantum-mechanical properties of both underlying materials and plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists and applied scientists and engineers.
Metasurfaces are thin two-dimensional metamaterial layers that allow or inhibit the propagation of electromagnetic waves in desired directions. For example, metasurfaces have been demonstrated to produce unusual scattering properties of incident plane waves or to guide and modulate surface waves to obtain desired radiation properties. These properties have been employed, for example, to create innovative wireless receivers and transmitters. In addition, metasurfaces have recently been proposed to confine electromagnetic waves, thereby avoiding undesired leakage of energy and increasing the overall efficiency of electromagnetic instruments and devices. The main advantages of metasurfaces with respect to the existing conventional technology include their low cost, low level of absorption in comparison with bulky metamaterials, and easy integration due to their thin profile. Due to these advantages, they are promising candidates for real-world solutions to overcome the challenges posed by the next generation of transmitters and receivers of future high-rate communication systems that require highly precise and efficient antennas, sensors, active components, filters, and integrated technologies. This Roadmap is aimed at binding together the experiences of prominent researchers in the field of metasurfaces, from which explanations for the physics behind the extraordinary properties of these structures shall be provided from viewpoints of diverse theoretical backgrounds. Other goals of this endeavour are to underline the advantages and limitations of metasurfaces, as well as to lay out guidelines for their use in present and future electromagnetic devices. This Roadmap is divided into five sections: 1. Metasurface based antennas. In the last few years, metasurfaces have shown possibilities for advanced manipulations of electromagnetic waves, opening new frontiers in the design of antennas. In this section, the authors explain how metasurfaces can be employed to tailor the radiation properties of antennas, their remarkable advantages in comparison with conventional antennas, and the future challenges to be solved. 2. Optical metasurfaces. Although many of the present demonstrators operate in the microwave regime, due either to the reduced cost of manufacturing and testing or to satisfy the interest of the communications or aerospace industries, part of the potential use of metasurfaces is found in the optical regime. In this section, the authors summarize the classical applications and explain new possibilities for optical metasurfaces, such as the generation of superoscillatory fields and energy harvesters. 3. Reconfigurable and active metasurfaces. Dynamic metasurfaces are promising new platforms for 5G communications, remote sensing and radar applications. By the insertion of active elements, metasurfaces can break the fundamental limitations of passive and static systems. In this section, we have contributions that describe the challenges and potential uses of active components in metasurfaces, including new studies on non-Foster, parity-time symmetric, and non-reciprocal metasurfaces. 4. Metasurfaces with higher symmetries. Recent studies have demonstrated that the properties of metasurfaces are influenced by the symmetries of their constituent elements. Therefore, by controlling the properties of these constitutive elements and their arrangement, one can control the way in which the waves interact with the metasurface. In this section, the authors analyze the possibilities of combining more than one layer of metasurface, creating a higher symmetry, increasing the operational bandwidth of flat lenses, or producing cost-effective electromagnetic bandgaps. 5. Numerical and analytical modelling of metasurfaces. In most occasions, metasurfaces are electrically large objects, which cannot be simulated with conventional software. Modelling tools that allow the engineering of the metasurface properties to get the desired response are essential in the design of practical electromagnetic devices. This section includes the recent advances and future challenges in three groups of techniques that are broadly used to analyze and synthesize metasurfaces: circuit models, analytical solutions and computational methods.
Natural products with medicinal value are gradually gaining importance in clinical research due to their well-known property of no side effects as compared to drugs. Tinospora cordifolia commonly named as “Guduchi” is known for its immense application in the treatment of various diseases in the traditional ayurvedic literature. Recently the discovery of active components from the plant and their biological function in disease control has led to active interest in the plant across the globe. Our present study in this review encompasses (i) the genetic diversity of the plant and (ii) active components isolated from the plant and their biological role in disease targeting. The future scope of the review remains in exploiting the biochemical and signaling pathways affected by the compounds isolated from Tinospora so as to enable new and effective formulation in disease eradication.
Time-varying metasurfaces are emerging as a powerful instrument for the dynamical control of the electromagnetic properties of a propagating wave. Here we demonstrate an efficient time-varying metasurface based on plasmonic nano-antennas strongly coupled to an epsilon-near-zero (ENZ) deeply sub-wavelength film. The plasmonic resonance of the metal resonators strongly interacts with the optical ENZ modes, providing a Rabi level spitting of ∼ 30%. Optical pumping at frequency ω induces a nonlinear polarisation oscillating at 2ω responsible for an efficient generation of a phase conjugate and a negative refracted beam with a conversion efficiency that is more than four orders of magnitude greater compared to the bare ENZ film. The introduction of a strongly coupled plasmonic system therefore provides a simple and effective route towards the implementation of ENZ physics at the nanoscale.Introduction. Time-varying systems and metasurfaces are of interest in view of the fundamental physics questions that have arisen [1][2][3][4][5][6][7] and also in view of the potential applications ranging from perfect lenses to spectral and temporal shaping of light fields [8][9][10][11][12][13][14][15][16][17]. Recent results have shown that thin films of epsilon-near-zero (ENZ) materials with a dielectric permittivity close to zero [18,19] at optical wavelengths in the visible or near-infrared spectral regions are promising candidates to achieve rapid (on the optical wave oscillation timescale) temporal changes of the optical properties [7]. The very large order-of-unity refractive index changes that can be induced optically [20][21][22][23] makes it possible to achieve efficient temporal modulation uniformly across the medium [10, 24] even in deeply subwavelength thin films [25][26][27], resulting in optically-induced negative refraction with unity efficiency [7]. However, the results demonstrated so far rely on high-intensity optical pumping of the ENZ film in order to achieve such large changes in the refractive index. Recently, the combination of ENZ films with plasmonic structures has led to a significant reduction of the required optical powers for the Kerr nonlinear contribution to the refractive index [28]. Coupling between light and matter can be enhanced when two resonant systems with the same optical resonant frequency are brought into close contact [29]. Strong coupling occurs when the strength of the coupling mech- * daniele.faccio@glasgow.ac.uk, r.sapienza@imperial.ac.uk, sha-laev@purdue.edu: † These authors contributed equally. anism (measured by the splitting of the two resonant frequencies [30]) dominates the intrinsic losses in the system thus resulting in a double peaked structure in the absorption spectrum or equivalently, in two well-separated polariton branches in the spectral domain. In the temporal domain, this will give rise to Rabi oscillations between the populations on these two branches and the combination of light-matter states where the matter component can contain a large fraction of the total ener...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.