To investigate the influence of nonlinearities on estimates of respiratory mechanics, differing patterns of mechanical ventilation patterns were analyzed from 8 puppies and 14 children. Respiratory mechanics were calculated using multiple linear regression to fit a linear single-compartment model, a volume-dependent single-compartment model (VDSCM), and a flow-dependent single-compartment model. The ratio of the compliance of the last 20% of the dynamic volume-pressure (V-P) curve to the total compliance (C20/C) and the contribution of a volume-dependent elastance to total elastance [%E2 = E2 (VT)/[(E1 + E2)VT], where E1 + E2 is total elastance, E2 is the volume-dependent component, and VT is tidal volume] were used as the indexes of over-distension. By positioning the dynamic loops on the static V-P curves, ventilation patterns were classified as overdistended or nonoverdistended. In the overdistended group, the C20/C was significantly lower (0.71 +/- 0.10 vs. 0.92 +/- 0.16; P < 0.0001) and %E2 was significantly higher (43.4 +/- 15.0 vs. 0.51 +/- 18.02%, P < 0.0001) than in the nonoverdistended group. The mode of ventilation (pressure controlled vs. volume controlled) and the resistive pressures that resulted in widening of the dynamic V-P loop were found to alter C20/C but not %E2. When the respiratory system was overdistended, i.e., ventilated up to the flattened portion of the V-P curve, the VDSCM gave more accurate estimates of respiratory mechanisms. Furthermore, %E2 calculated from VDSCM is a useful parameter for estimating respiratory system overdistension that is not affected by resistive pressures.
Measurements of respiratory mechanics are frequently made in ventilated infants and children. Esophageal pressure measurements (Pes) using a balloon on a catheter have been used to partition the respiratory mechanics into lung and chest wall components. Appropriate positioning of this balloon is crucial to obtain accurate estimates of pleural pressure. Traditionally, in spontaneously breathing subjects the balloon position is assessed with an occlusion test. In ventilated subjects, it is not always possible to perform an occlusion test prior to paralysis, and even if such a test is performed it may be relevant under conditions of positive pressure ventilation. By occluding the airway opening and applying gentle pressure to the abdomen or rib cage, positive swings in pressure can be measured by both Pes and airway opening pressure (Pao). We compared traditional occlusion tests measured in 16 spontaneously breathing puppies to the positive pressure occlusion test performed after paralysis. In 2 pups we were unable to obtain a reasonable traditional occlusion test (> 15% difference between Pes and Pao) but we obtained 10 traditional occlusion tests in each of the remaining 14 pups (2.1-14 kg). In 11 of these animals delta Pes was within 10% of delta Pao. This compared well to positive pressure occlusion test using abdominal pressure performed after analysis, where delta Pes was within 10% of delta Pao in 10 animals. In 9 of these pups occlusion tests were also performed by applying pressure on the rib cage, where delta Pes was within 10% of delta Pao in 6 animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Congenital heart malformations are often associated with altered pulmonary hemodynamics. Lesions associated with increased pulmonary blood flow (PBF) or increased mean pulmonary artery pressure (MPAP) may in turn alter respiratory mechanics. Surgical correction of these cardiac defects frequently involves the use of cardiopulmonary bypass (CPB), during which the lung may be partially or completely atelectatic for lengthy periods, further compromising lung mechanics. The aims of this study were to document the effect of PBF on respiratory mechanics in children and to determine whether the detrimental effects of CPB were outweighed by the potentially positive effects of the corrective surgery. Twenty-three children (2-120 mo) undergoing surgery were studied while anesthetized, paralyzed, and mechanically ventilated. Pulmonary to systemic blood flow ratio was used as an index of PBF. Seventeen children had lesions associated with increased PBF (group 1), while six had decreased or normal PBF (group 2). Respiratory mechanics were measured just before the commencement of CPB and within approximately 2 h after the cessation of CPB, with the chest closed. Dynamic elastance (Ers,dyn) and resistance (RRS) were calculated from flow, volume (V), and pressure (Pao) measurements, using multiple linear regression with a volume-dependent single compartment model. Static elastance (ERS,st) was calculated from Pao and V measurements obtained when deflating the lung in steps from a maximal Pao of 30 cm H2O. ERS,dyn, ERS,st, and RRS increased significantly with increasing PBF to 220-330% predicted. There was no correlation between MPAP and respiratory mechanics. After CPB, ERS, dyn and RRS fell to normal levels in group 1.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.