Driving range and fast charge capability of electric vehicles are heavily dependent on the 3D microstructure of lithium-ion batteries (LiBs) and substantial fundamental research is required to optimise electrode design for specific operating conditions. Here we have developed a full microstructure-resolved 3D model using a novel X-ray nano-computed tomography (CT) dual-scan superimposition technique that captures features of the carbonbinder domain. This elucidates how LiB performance is markedly affected by microstructural heterogeneities, particularly under high rate conditions. The elongated shape and wide size distribution of the active particles not only affect the lithium-ion transport but also lead to a heterogeneous current distribution and non-uniform lithiation between particles and along the through-thickness direction. Building on these insights, we propose and compare potential graded-microstructure designs for next-generation battery electrodes. To guide manufacturing of electrode architectures, in-situ X-ray CT is shown to reliably reveal the porosity and tortuosity changes with incremental calendering steps.
This study presents a technique to directly characterize the carbon and binder domain (CBD) in lithium-ion (Li-ion) battery electrodes in three dimensions and use it to determine the effective transport properties of a Li-Ni 0.33 Mn 0.33 Co 0.33 O 2 (NMC) electrode. X-ray nanocomputed tomography (nano-CT) is used to image an electrode composed solely of carbon and binder, whereas focused ion beam−scanning electron microscopy is used to analyze cross-sections of a NMC electrode to gain morphological information regarding the electrode and CBD porosity. Combining the information gathered from these techniques reduces the uncertainty inherent in segmenting the nano-CT CBD data set and enables effective diffusivity of its porous network to be determined. X-ray microcomputed tomography (micro-CT) is then used to collect a NMC data set that is subsequently segmented into three phases, comprised of active material, pore, and CBD. The effective diffusivity calculated for the nano-CT data set is incorporated for the CBD present in the micro-CT data set to estimate the ensemble tortuosity factor for the NMC electrode. The tortuosity factor greatly increases when compared to the same data set segmented without considering the CBD. The porous network of the NMC electrode is studied with a continuous pore size distribution approach that highlights median radii of 180 nm and 1 μm for the CBD and NMC pores, respectively, and with a pore throat size distribution calculation that highlights median equivalent radii of 350 and 700 nm.
Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.