This study presents a technique to directly characterize the carbon and binder domain (CBD) in lithium-ion (Li-ion) battery electrodes in three dimensions and use it to determine the effective transport properties of a Li-Ni 0.33 Mn 0.33 Co 0.33 O 2 (NMC) electrode. X-ray nanocomputed tomography (nano-CT) is used to image an electrode composed solely of carbon and binder, whereas focused ion beam−scanning electron microscopy is used to analyze cross-sections of a NMC electrode to gain morphological information regarding the electrode and CBD porosity. Combining the information gathered from these techniques reduces the uncertainty inherent in segmenting the nano-CT CBD data set and enables effective diffusivity of its porous network to be determined. X-ray microcomputed tomography (micro-CT) is then used to collect a NMC data set that is subsequently segmented into three phases, comprised of active material, pore, and CBD. The effective diffusivity calculated for the nano-CT data set is incorporated for the CBD present in the micro-CT data set to estimate the ensemble tortuosity factor for the NMC electrode. The tortuosity factor greatly increases when compared to the same data set segmented without considering the CBD. The porous network of the NMC electrode is studied with a continuous pore size distribution approach that highlights median radii of 180 nm and 1 μm for the CBD and NMC pores, respectively, and with a pore throat size distribution calculation that highlights median equivalent radii of 350 and 700 nm.
The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.
Imprinted fluidic devices with nanochannels and transient inlets with smooth, gradually decreasing dimensions are used to analyze the flow of DNA single molecules.
High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of electron-transparent samples show dominant atomic number (Z-) contrast with a high lateral resolution. HAADF STEM at low electron energies <30 keV is applied in this work for quantitative composition analyses of InGaAs quantum wells. To determine the local composition, normalized experimental image intensities are compared with results of Monte Carlo simulations. For verification of the technique, InGaAs/GaAs quantum-well structures with known In concentration are used. Transmission electron microscopy samples with known thickness are prepared by the focused-ion-beam technique. The method can be extended to other material systems and is particularly promising for the analysis of materials that are sensitive toward knock-on damage.
Correlative imaging provides a method of investigating complex systems by combining analytical (chemistry) and imaging (tomography) information across dimensions (2D-3D) and scales (centimetres-nanometres). We studied weathering processes in a modern cryptogamic ground cover from Iceland, containing early colonizing, and evolutionary ancient, communities of mosses, lichens, fungi, and bacteria. Targeted multi-scale X-ray Microscopy of a grain in-situ within a soil core revealed networks of surficial and internal features (tunnels) originating from organic-rich surface holes. Further targeted 2D grain characterisation by optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (SEM–EDS), following an intermediate manual correlative preparation step, revealed Fe-rich nodules within the tunnels. Finally, nanotomographic imaging by focussed ion beam microscopy (FIB-SEM) revealed coccoid and filamentous-like structures within subsurface tunnels, as well as accumulations of Fe and S in grain surface crusts, which may represent a biological rock varnish/glaze. We attribute these features to biological processes. This work highlights the advantages and novelty of the correlative imaging approach, across scales, dimensions, and modes, to investigate biological weathering processes. Further, we demonstrate correlative microscopy as a means of identifying fingerprints of biological communities, which could be used in the geologic rock record and on extra-terrestrial bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.