Cultivated chrysanthemum ( Chrysanthemum morifolium Ramat.) is one of the most economically important ornamental crops grown worldwide. It has a complex hexaploid genome (2 n = 6 x = 54) and large genome size. The diploid Chrysanthemum seticuspe is often used as a model of cultivated chrysanthemum, since the two species are closely related. To expand our knowledge of the cultivated chrysanthemum, we here performed de novo whole-genome assembly in C. seticuspe using the Illumina sequencing platform. XMRS10, a C. seticuspe accession developed by five generations of self-crossing from a self-compatible strain, AEV2, was used for genome sequencing. The 2.72 Gb of assembled sequences (CSE_r1.0), consisting of 354,212 scaffolds, covered 89.0% of the 3.06 Gb C. seticuspe genome estimated by k-mer analysis. The N50 length of scaffolds was 44,741 bp. For protein-encoding genes, 71,057 annotated genes were deduced (CSE_r1.1_cds). Next, based on the assembled genome sequences, we performed linkage map construction, gene discovery and comparative analyses for C. seticuspe and cultivated chrysanthemum. The generated C. seticuspe linkage map revealed skewed regions in segregation on the AEV2 genome. In gene discovery analysis, candidate flowering-related genes were newly found in CSE_r1.1_cds. Moreover, single nucleotide polymorphism identification and annotation on the C . × morifolium genome showed that the C. seticuspe genome was applicable to genetic analysis in cultivated chrysanthemums. The genome sequences assembled herein are expected to contribute to future chrysanthemum studies. In addition, our approach demonstrated the usefulness of short-read genome assembly and the importance of choosing an appropriate next genome sequencing technology based on the purpose of the post-genome analysis.
Clovers (genus Trifolium) are widely cultivated across the world as forage legumes and make a large contribution to livestock feed production and soil improvement. Subterranean clover (T. subterraneum L.) is well suited for genomic and genetic studies as a reference species in the Trifolium genus, because it is an annual with a simple genome structure (autogamous and diploid), unlike the other economically important perennial forage clovers, red clover (T. pratense) and white clover (T. repens). This report represents the first draft genome sequence of subterranean clover. The 471.8 Mb assembled sequence covers 85.4% of the subterranean clover genome and contains 42,706 genes. Eight pseudomolecules of 401.1 Mb in length were constructed, based on a linkage map consisting of 35,341 SNPs. The comparative genomic analysis revealed that different clover chromosomes showed different degrees of conservation with other Papilionoideae species. These results provide a reference for genetic and genomic analyses in the genus Trifolium and new insights into evolutionary divergence in Papilionoideae species.
Many studies have reported intraspecific variations in leaf functional traits, but their contribution to plant performance and ecosystem function are poorly understood. We studied altitudinal gradients of intraspecific variations in leaf traits, productivity and resource use efficiency in the dominant species of subalpine evergreen coniferous and deciduous broad‐leaved forests in Japan. We addressed three hypotheses, which are exclusive to each other. (1) Leaf traits vary along the leaf economics spectrum (LES). Plants that grow at lower and higher altitudes have fast‐ and slow‐return strategies, respectively, which improve productivity or resource use efficiency in the respective habitat. (2) Leaf trait variations are not consistent with the LES, but they contribute to improving productivity or resource use efficiency in the respective habitat. (3) Leaf trait variations do not contribute to improving productivity or resource use efficiency at higher altitudes. On the studied mountain range, Fagus crenata, a deciduous broad‐leaved tree, and Abies mariesii, an evergreen conifer, are the dominant species at lower and higher altitudes respectively. In F. crenata, leaf mass per area (LMA) and nitrogen concentrations were higher at higher altitudes. The net assimilation rate and light use efficiency during the growing season were greater at higher altitudes, which compensated for the shorter growing season in terms of annual productivity. In A. mariesii, the LMA was lower and the leaf life span was unchanged at higher altitudes. Productivity and resource use efficiency decreased with altitude. Synthesis. We conclude that F. crenata improves its productivity and resource use efficiency at higher altitudes by altering its leaf functional traits (Hypothesis 2), whereas alterations to leaf traits in A. mariesii are not associated with any improvement at higher altitudes (Hypothesis 3), which may result from the negative impact of environmental stress. Hence, the ecological significance of altitudinal variations in leaf traits depends on species and environment.
In Arabidopsis thaliana, the FLOWERING LOCUS T (FT) gene, acting as a floral promoter, is expressed and translated in leaves, and is then transported to the shoot apical meristem. In contrast, the expression pattern of the FaFT3 gene in the crown, which contains the shoot apical meristem, is coordinated with the initiation of the floral bud in the June-bearing type of cultivated strawberry (Fragaria × ananassa) 'Nyoho'. However, whether the FaFT3 protein functions as a floral promoter and whether the expression pattern of FaFT3 in the crown observed in 'Nyoho' is conserved in other strawberry cultivars are not known. In this study, we investigated the floral inducer activity of the FaFT3 gene isolated from the cultivated strawberry 'Tochiotome' using FaFT3-overexpressing transgenic Arabidopsis lines and performed expression analysis on the FaFT3 gene in the crown tip of 'Tochiotome'. Transgenic plants overexpressing the FaFT3 gene exhibited an earlyflowering phenotype under both long-day and short-day conditions. Conversely, induction of FaFT3 expression at the crown tip specifically under floral induction conditions was not observed. However, RNA-seq analysis of laser microdissected meristem cells before and after floral bud initiation clearly revealed that the FaFT3 gene is specifically expressed in floral meristem cells. These results suggest that the FaFT3 gene acts as a common floral promoter in June-bearing Japanese cultivated strawberries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.