SUMMARYWe conducted a survey during the period from 1974 to 1976, to Of 302 strains isolated, from dogs, cats, fresh water fish, river water and healthy carriers, 196 were typed to 50 serovars. Most of the serovars were found to be similar to strains isolated from patients with gastroenteritis due to P. shigelloides.
Staphylococcal food poisoning (SFP), one of the commonest food-borne diseases, results from the ingestion of one or more staphylococcal enterotoxins (SEs) produced in foods by Staphylococcus aureus. In the present study, 203 S. aureus strains originating from 83 outbreaks that had occurred in Tokyo were examined for their coagulase type and genotype of SEs to analyze their molecular epidemiological characteristics. The representative subsets of the 83 S. aureus isolates were analyzed by multilocus sequence typing (MLST) and S. aureus pathogenicity island (SaPI) scanning. The isolates were integrated into eight specific clonal complexes (CC) s; CC81, CC8, CC6, CC5, CC508, CC59, CC20 and CC30. The profiles of the coagulase type, SE/SEl genotype and the suspected type of enterotoxin-encoding mobile genetic element (MGE) indicated a correlation with each CC. SaPI scanning showed fixed regularity between the distributions of genomic islands, including SaPIs, and the phylogenetic lineage based on MLST. These results indicate that the S. aureus isolates, which classified into eight CCs, have distinguishable properties concerning specific coagulase type, enterotoxin genotype and MGE type. Strains of S. aureus harboring these particular elements possess the potential to cause SFP.
Many studies have reported intraspecific variations in leaf functional traits, but their contribution to plant performance and ecosystem function are poorly understood. We studied altitudinal gradients of intraspecific variations in leaf traits, productivity and resource use efficiency in the dominant species of subalpine evergreen coniferous and deciduous broad‐leaved forests in Japan.
We addressed three hypotheses, which are exclusive to each other. (1) Leaf traits vary along the leaf economics spectrum (LES). Plants that grow at lower and higher altitudes have fast‐ and slow‐return strategies, respectively, which improve productivity or resource use efficiency in the respective habitat. (2) Leaf trait variations are not consistent with the LES, but they contribute to improving productivity or resource use efficiency in the respective habitat. (3) Leaf trait variations do not contribute to improving productivity or resource use efficiency at higher altitudes.
On the studied mountain range, Fagus crenata, a deciduous broad‐leaved tree, and Abies mariesii, an evergreen conifer, are the dominant species at lower and higher altitudes respectively. In F. crenata, leaf mass per area (LMA) and nitrogen concentrations were higher at higher altitudes. The net assimilation rate and light use efficiency during the growing season were greater at higher altitudes, which compensated for the shorter growing season in terms of annual productivity. In A. mariesii, the LMA was lower and the leaf life span was unchanged at higher altitudes. Productivity and resource use efficiency decreased with altitude.
Synthesis. We conclude that F. crenata improves its productivity and resource use efficiency at higher altitudes by altering its leaf functional traits (Hypothesis 2), whereas alterations to leaf traits in A. mariesii are not associated with any improvement at higher altitudes (Hypothesis 3), which may result from the negative impact of environmental stress. Hence, the ecological significance of altitudinal variations in leaf traits depends on species and environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.