Since future energy harvesting technologies require stable supply and high-efficiency energy conversion, there is an increasing demand for high-performance organic thermoelectric generators (TEGs) based on waterproof thermoelectric materials. The poor stability of n-type organic semiconductors in air and water has proved a roadblock in the development of reliable thermoelectric power generators. We developed a simple green route for preparing n-type carbon nanotubes (CNTs) by doping with cationic surfactants and fabricated films of the doped CNTs using only aqueous media. The thermoelectric properties of the CNT films were investigated in detail. The nanotubes doped using a cationic surfactant (cetyltrimethylammonium chloride (CTAC)) retained an n-doped state for at least 28 days when exposed to water and air, indicating higher stability than that for contemporary CNT-based thermoelectric materials. The wrapping of the surfactant molecules around the CNTs is responsible for blocking oxygen and water from attacking the CNT walls, thus, extending the lifetime of the n-doped state of the CNTs. We also fabricated thermoelectric power conversion modules comprising CTAC-doped (n-type) and sodium dodecylbenzenesulfonate- (SDBS-) doped (p-type) CNTs and tested their stabilities in water. The modules retained 80±2.4% of their initial maximum output power (at a temperature difference of 75°C) after being submerged in water for 30 days, even without any sealing fills to prevent device degradation. The remarkable stability of our CNT-based modules can enable the development of reliable soft electronics for underwater applications.
Flexible p–n thermoelectric generator (TEG) technology has rapidly advanced with power enhancement and size reduction. To achieve a stable power supply and highly efficient energy conversion, absolute chemical stability of n‐type materials is essential to ensuring large temperature differences between device terminals and ambient stability. With the aim of improving the long‐term stability of the n‐type operation of carbon nanotubes (CNTs) in air and water, this study uses cationic surfactants, such as octylene‐1,8‐bis(dimethyldodecylammonium bromide) (12–8–12), a gemini surfactant, to stabilize the nanotubes in a coating, which retains the n‐doped state for more than 28 days after exposure to air and water in experiments. TEGs with 10 p–n units of 12–8–12/CNT (n‐type) and sodium dodecylbenzene sulfonate/CNT (p‐type) layers are manufactured, and their water stability is evaluated. The initial maximum output of 16.1 µW (75 K temperature difference) is retained after water immersion for 40 days without using a sealant to prevent TEG module degradation. The excellent stability of these CNT‐based TEGs makes them suitable for underwater applications, such as battery‐free health monitoring and information gathering systems, and facilitates the development of soft electronics.
The p-type properties of carbon nanotubes (CNTs) in organic thermoelectric devices need urgent improvement for large-scale, low-grade thermal energy applications. Here, we present a suitable approach to significantly enhance the power factor (PF) by increasing the electrical conductivity through the low-temperature calcination-induced pyrolysis of the insulating γ-cyclodextrin polymer (PγCyD), which is used as a solubilizer of film-like CNTs. The low-temperature calcination method, which can be used to realize good electrical contact between CNT bundles, shows enhancement behavior as a universal phenomenon for not only PγCyD but also other commonly used polymers for CNT films. To moderate the calcination temperature, the Pd catalyst was added, and the optimal temperature was reduced from 340 °C to 250 °C. Consequently, the PF value of the CNT film was 570 μW m−1 K−2, which was found to be more than twice that of the original CNT film. In addition, we demonstrated the energy harvesting capability of a thermoelectric generator based on this p-type CNT film; a thermoelectric generator with 10 p-type thermoelectric elements showed a maximum power output of 10.3 μW with a temperature difference of 75 °C, which is comparable to the maximum power output of some of the best single-component organic thermoelectric devices demonstrated to date. This outstanding output power shows that easy-to-handle CNT films with low-temperature heat treatment can open new avenues for the development of thermoelectric generators.
The semiconducting properties of polyazacycloalkane/carbon nanotubes film can be changed from n-type to p-type by Cu ions, which simplifies module manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.