Transportation projects often require large initial investments and are
expected to generate benefits extending far into the future. Thus, there is a
need to compare benefits and costs that occur at different periods over time.
Since money has a time value, the same amount of money at different time
periods does not have the same value. Therefore, it is important to convert
costs and benefits into equivalent values when conducting a Cost-Benefit
Analysis (CBA). A special category of transportation projects is that of
Intelligent Transport Systems (ITS). ITS comprise innovative solutions for
travel demand and traffic management, and it is expected to play a key role
in future sustainable urban development plans. Compared to other
transportation projects, ITS have a lower initial investment. In this paper a
framework based on a CBA is presented, assessing costs and benefits of three
ITS projects implemented in Thessaloniki, Greece. The paper refers to future
developments of ITS in the city of Thessaloniki. The examined systems have
already been developed as demonstration systems in various regions throughout
Europe. The benefits of the systems have been transferred and scaled up, so
as to be in line with the specific characteristics of the Greek environment.
The maritime sector significantly contributes on the major environmental problems that humanity is being confronted with their consequences. The Greenhouse Gases (GHGs) emitted from the sector, which are responsible for the global phenomenon of climate change, are estimated in 2,89% of total anthropogenic GHGs. Ships are also an important source of local air-quality degradation in coastal areas by emitting major quantities of pollutants such as Nitrogen Oxides (NOx), Sulphur Oxides (SOx) and Particulate Matter (PM). The overall emitted quantities of the sector seem not to be equally allocated to the major ship classes (containers, dry and liquid bulk carriers, cruise ships, ro-ro ships etc.), even though the engine technologies that are being used in these classes are approximately the same (slow speed, medium speed, high speed diesel engines). A factor of differentiation among the ship types is the activity profile. Depending on the ship type, engines (main, auxiliary, boilers) present different power needs and therefore are being operated at different load points which among others are related with the sailing profile (cruising, maneuvering, hoteling), the cargo type and weight conditions (laden, ballast). In this context the target of the present paper is to evaluate the emission performance of the major ship classes. This evaluation is performed by using a new set of engine load-dependent Emission Factors for ships, which have been derived by a statistical analysis of emission rates found in literature, in combination with average activity profiles per ship type as these are found in dedicated shipping inventory databases and in literature. These activity data concern a global scale of consideration. Results aim to highlight the differences and similarities in the emission performance of ship types, enhancing the understanding of policy makers and ship operators, on the principle of tackling pollutants especially at ports, close to cities.
This paper presents the measurement techniques deployed by the European funded SCIPPER project in order to identify their potential in assisting regulatory authorities to enforce the new emission limits for shipping. On-board sensors, sniffer remote and remote optical devices were extensively used in field campaigns to measure over 1000 ship plumes in major European seas, such as the ports of Hamburg and Marseille, a route in the Baltic Sea and the English Channel. Demonstration results revealed the operational characteristics of the techniques, further to their pollutant detection sensitivity. A preliminary evaluation is conducted in this study considering several criteria of technology maturity, operational capacity, ease of implementation and costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.