Among wide bandgap semiconductors, diamond presents physical properties particularly suited for high performance power electronic devices. Growth and doping of chemical vapor deposited (CVD) diamond have been mainly optimized in the conventional (100) crystal orientation, highly studied on (111) surfaces and recently initiated on (113). This last orientation seems very promising, as is shown for intrinsic and p-type doped diamonds. In this work, we report the growth of CVD phosphorus doped diamond films on (113)-oriented substrates. The (113) homoepitaxial layers present a phosphorus content in the range of 7.2 Â 10 16 up to 4.5 Â 10 19 at/cm 3 for thicknesses between 0.6 lm and 4 lm. The high quality and the full incorporation of phosphorus into donor sites found for the ( 113) crystal orientation open new architecture possibilities for bipolar diamond devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.