A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Objective. To evaluate the prevalence and predictive value of anti-cyclic citrullinated peptide (anti-CCP) antibodies in individuals who subsequently developed rheumatoid arthritis (RA) and to determine the relationship to rheumatoid factor (RF) of any isotype.Methods. A case-control study was nested within the Northern Sweden Health and Disease Study and the Maternity cohorts of Northern Sweden. Patients with RA were identified among blood donors whose samples had been taken years before the onset of symptoms. Control subjects matched for age, sex, date of sampling, and residential area were selected randomly from the same cohorts. Anti-CCP antibody and RFs were determined using enzyme immunoassays.Results. Eighty-three individuals with RA were identified as having donated blood before presenting with any symptoms of joint disease (median 2.5 years [interquartile range 1.1-4.7] before RA). In samples obtained before the onset of RA, the prevalence of autoantibodies was 33.7% for anti-CCP, 16.9% for IgG-RF, 19.3% for IgM-RF, and 33.7% for IgA-RF (all highly significant compared with controls). The sensitivities for detecting these autoantibodies >1.5 years and <1.5 years before the appearance of any RA symptoms were 25% and 52% for anti-CCP, 15% and 30% for IgM-RF, 12% and 27% for IgG-RF, and 29% and 39% for IgA-RF. In conditional logistic regression models, anti-CCP antibody and IgA-RF were found to be significant predictors of RA.Conclusion. Anti-CCP antibody and RFs of all isotypes predated the onset of RA by several years. The presence of anti-CCP and IgA-RF predicted the development of RA, with anti-CCP antibody having the highest predictive value. This indicates that citrullination and the production of anti-CCP and RF autoantibodies are early processes in RA.
Objective. To investigate whether smoking and HLA-DR shared epitope (SE) genes may interact in triggering immune reactions to citrulline-modified proteins.Methods. In a case-control study involving patients with recent-onset rheumatoid arthritis (RA), we studied interactions between a major environmental risk factor (smoking), major susceptibility genes included in the SE of HLA-DR, and the presence of the most specific autoimmunity known for RA (i.e., antibodies to proteins modified by citrullination). Immunostaining for citrullinated proteins in cells from bronchoalveolar lavage fluid was used to investigate whether smoking is associated with citrullination in the lungs.Results. Previous smoking was dose-dependently associated with occurrence of anticitrulline antibodies in RA patients. The presence of SE genes was a risk factor only for anticitrulline-positive RA, and not for anticitrulline-negative RA. A major geneenvironment interaction between smoking and HLA-DR SE genes was evident for anticitrulline-positive RA, but not for anticitrulline-negative RA, and the combination of smoking history and the presence of double copies of HLA-DR SE genes increased the risk for RA 21-fold compared with the risk among nonsmokers carrying no SE genes. Positive immunostaining for citrullinated proteins was recorded in bronchoalveolar lavage cells from smokers but not in those from nonsmokers.Conclusion. We identified an environmental factor, smoking, that in the context of HLA-DR SE genes may trigger RA-specific immune reactions to citrullinated proteins. These data thus suggest an etiology involving a specific genotype, an environmental provocation, and the induction of specific autoimmunity, all restricted to a distinct subset of RA.
SummaryUsing the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.