ArtikkelitTerveystieteiden tiedekunta 2017The frequency and influence of dementia risk factors in prodromal This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT The frequency and influence of dementia risk factors in prodromalAlzheimer's disease. Only alcohol use increased the risk of cognitive decline, regardless of AD pathology. M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPTThese results suggest that traditional risk factors for AD are not associated with prodromal AD or with progression to dementia, among subjects with MCI. Future studies should validate these findings and determine whether risk factors might be of influence at an earlier stage (i.e. preclinical) of AD.
To emphasize physio-pathological, clinical and prognosis differences between conditions causing serious and sometimes very similar clinical manifestations: anti-aquaporin-4 (AQP4) and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies related diseases, and seronegative NMOSD (neuromyelitis optica spectrum disorders). Based on Wingerchuk et al. (Neurology 85:177–189, 2015) criteria for NMOSD and on those more recently proposed by Jarius et al. (J Neuroinflammation 15:134, 2018) for MOGAD (MOG associated disorders), we retrospectively surveyed 10 AQP4-NMOSD, 8 MOGAD and 2 seronegative NMOSD, followed at the specialized neuroimmunology unit of the CHU Liège. Female predominance was only observed in AQP4 group. Age at onset was 37.8 and 27.7 years old for AQP4-NMOSD and MOGAD, respectively. In both groups, the first clinical event most often consisted of optic neuritis (ON), followed by isolated myelitis. Fifteen of our 20 patients encountered a relapsing course with 90% relapses in AQP4-NMOSD, 62.5% in MOGAD and 50% in the seronegative group, and a mean period between the first and second clinical event of 7.1 and 4.8 months for AQP4-NMOSD and MOGAD, respectively. In total, we counted 54 ON, with more ON per patient in MOGAD. MOG-associated ON mainly affected the anterior part of the optic nerve with a papilledema in 79.2% of cases. Despite a fairly good visual outcome after MOG-associated ON, retinal nerve fibre layer (RNFL) thickness decreased, suggesting a fragility of the optic nerve toward further attacks. As observed in larger cohorts, our MOGAD and AQP4-NMOSD cases differ by clinical and prognostic features. A better understanding of these diseases should encourage prompt biological screening and hasten proper diagnosis and treatment.
Atezolizumab successfully reinvigorated JC virus immunity in a patient in Belgium with progressive multifocal leukoencephalopathy, as demonstrated by clinical, virologic, and radiologic response to treatment. However, the treatment also resulted in immune reconstitution inflammatory syndrome and life-threatening immune-related adverse events. These conditions were treated with corticosteroids, leading to treatment resistance.
Introduction:Quantitative MRI quantifies tissue microstructural properties and supports the characterization of cerebral tissue damages. With an MPM protocol, 4 parameter maps are constructed: MTsat, PD, R1 and R2*, reflecting tissue physical properties associated with iron and myelin contents. Thus, qMRI is a good candidate for in vivo monitoring of cerebral damage and repair mechanisms related to MS. Here, we used qMRI to investigate the longitudinal microstructural changes in MS brain.Methods: Seventeen MS patients (age 25-65, 11 RRMS) were scanned on a 3T MRI, in two sessions separated with a median of 30 months, and the parameters evolution was evaluated within several tissue classes: NAWM, NACGM and NADGM, as well as focal WM lesions. An individual annual rate of change for each qMRI parameter was computed, and its correlation to clinical status was evaluated. For WM plaques, three areas were defined, and a GLMM tested the effect of area, time points, and their interaction on each median qMRI parameter value.Results: Patients with a better clinical evolution, that is, clinically stable or improving state, showed positive annual rate of change in MTsat and R2* within NAWM and NACGM, suggesting repair mechanisms in terms of increased myelin content and/or axonal density as well as edema/inflammation resorption. When examining WM lesions, qMRI parameters within surrounding NAWM showed microstructural modifications, even before any focal lesion is visible on conventional FLAIR MRI. Conclusion:The results illustrate the benefit of multiple qMRI data in monitoring subtle changes within normal appearing brain tissues and plaque dynamics in relation with tissue repair or disease progression.Emilie Lommers and Christophe Phillips equally contributed to the work.
Objectives: Contrary to conventional MRI (cMRI), quantitative MRI (qMRI) quantifies tissue physical microstructural properties and improves the characterization of cerebral damages in relation with various neurological diseases. With a multi-parameter mapping (MPM) protocol, 4 parameter maps are constructed: saturated magnetization transfer (MTsat), proton density (PD), longitudinal relaxation (R1) and effective transverse relaxation (R2*) rates, reflecting tissue physical properties associated with iron and myelin contents. Here, we used qMRI to investigate the microstructural changes happening over time in multiple sclerosis (MS). Methods: Seventeen MS patients (age 25-65, 11 RRMS) were scanned on a 3T MRI, with at least one year separation between two acquisition sessions, and the evolution of their parameters was evaluated within several tissue classes: normal-appearing white matter (NAWM), normal-appearing cortical and deep gray matter (NACGM and NADGM) as well as focal white matter (WM) lesions. Brain tissue segmentation was performed using US-with-Lesion, an adapted version of the Unified Segmentation (US) algorithm accounting for the lesion tissue class, based on qMRI and FLAIR images. An individual annual rate of change for each qMRI parameter was computed, and its correlation to clinical status was evaluated. As for WM plaques, three areas were defined within them. A Generalized Linear Mixed Model (GLMM) tested the effect of area and time points, as well as their interaction on each median qMRI parameter value. Results: Patients with a better clinical evolution showed positive annual rate of change in MT and R2* within NAWM and NACGM, suggesting repair mechanisms in terms of increased myelin content and/or axonal density. When examining focal WM lesions, qMRI parameters within surrounding NAWM showed modification in terms of reduction in MT, R1 and R2* combined with increased of PD even before any focal lesion is visible on conventional FLAIR MRI. Conclusion: The results illustrate the benefit of multiple qMRI data in monitoring subtle changes within normal appearing brain tissues and plaque dynamics in relation with tissue repair or disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.