The stability of a strong-coupling singlet optical bipolaron is studied for the first time in two- and three-dimensional parabolic quantum dots using the Landau - Pekar variational method. It is shown that the confining potential of the quantum dot reduces the stability of the bipolaron.
An all-coupling variational calculation based on Lee-Low-Pines-Huybrechts (LLPH) theory is performed to study the ground state and the first excited state in an asymmetric polar semiconductor quantum wire that is valid for the entire range of the electron-phonon coupling constant and arbitrary confinement length. It is shown that the polaronic effects are very important and size dependent, if the effective width of the wire is reduced below a certain length scale. It is also shown that asymmetry in a quantum wire can be used as an extra parameter to increase the stability of the polaron. Finally the theory is applied to a realistic CdS quantum wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.