Understanding the response of ecological networks to perturbations and disruptive events is needed to anticipate the biodiversity loss and extinction cascades. Here, we study how network plasticity reshapes the topology of mutualistic networks in response to species loss. We analyze more than one hundred empirical mutualistic networks and considered random and targeted removal as mechanisms of species extinction. Network plasticity is modeled as either random rewiring, as the most parsimonious approach, or resource affinity-driven rewiring, as a proxy for encoding the phylogenetic similarity and functional redundancy among species. This redundancy should be positively correlated with the robustness of an ecosystem, as functions can be taken by other species once one of them is extinct. We show that effective modularity, i.e. the ability of an ecosystem to adapt or restructure, increases with increasing numbers of extinctions, and with decreasing the replacement probability. Importantly, modularity is mostly affected by the extinction rather than by rewiring mechanisms. These changes in community structure are reflected in the robustness and stability due to their positive correlation with modularity. Resource affinity-driven rewiring offers an increase of modularity, robustness, and stability which could be an evolutionary favored mechanism to prevent a cascade of co-extinctions.
In order to extract hidden joint information from two possibly uncorrelated time-series, we explored the measures of network science. Alongside common methods in time-series analysis of the economic markets, the mapping joint structure of two time-series onto a network provides insight into hidden aspects embedded in the couplings. We quantise the amplitude of two time-series and investigate relative simultaneous locations of those amplitudes. Each segment of a quantised amplitude is considered as a node. The simultaneity of the amplitudes of the two time-series is considered as the links in the network. The frequency of occurrences forms the weighted links. In order to extract information, we need to measure to what extent the coupling deviates from the coupling of two uncoupled series. Also, we need to measure to what extent the couplings inherit their charachteristics from a Gaussian distribution or a non-Gaussian distribution. We mapped the network from two surrogate time-series. The results show that the couplings of markets possess some features which diverge from the same features of the network mapped from white noise, and from the network mapped from two surrogate time-series. These deviations prove that there exist joint information and cross-correlation therein. By applying network's topological and statistical measures and the deformation ratio in joint probability distribution, we distinguished basic structures of cross-correlation and coupling of cross-markets. It was discovered that even two possibly known uncorrelated markets may possess some joint patterns with each other. Thereby, those markets should be examined as coupled and weakly coupled markets.
We study how the community structure of bipartite mutualistic networks changes in a dynamic context. First, we consider a real mutualistic network and introduce extinction events according to several scenarios. We model extinctions as node or interaction removals. For node removal, we consider random, directed and sequential extinctions; for interaction removal, we consider random extinctions. The bipartite network reorganizes showing an increase of the effective modularity and a fast decrease of the persistence of the species in the original communities with increasing number of extinction events. Second, we compare extinctions in a real mutualistic network with the growth of a bipartite network model. The modularity reaches a stationary value and nodes remain in the same community after joining the network. Our results show that perturbations and disruptive events affect the connectivity pattern of mutualistic networks at the mesoscale level. The increase of the effective modularity observed in some scenarios could provide some protection to the remaining ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.