Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively.
This paper focuses on the development of an effective methodology to obtain the optimum removal conditions assisted by ultrasonics to maximize the simultaneous removal of dyes, eosin Y (EY), methylene blue (MB) and phenol red (PR), by Cu(OH)-NP-AC in aqueous solution using response surface methodology (RSM). The effects of variables such as pH, initial dyes concentrations (mgL), and amount of sorbent (mg) and sonication time (min) on the dyes removal were studied. A central composite design (CCD) was applied to evaluate the interactive effects of adsorption variables. A good correlation (with R>0.940) between the statistical model and experiment was found for dyes removal from aqueous wastewater using the adsorbent. The optimum removal (99.20%±1.48) was thus obtained at pH 6.0, ultrasound time 2.5min, adsorbent mass 20mg and initial dye concentration at 5mgL for MB and EY and 12.5mgL for PR. The maximum adsorption capacity (Q) was calculated from the Langmuir isotherm as 32.9, 26.4 and 38.5mgg for the MB, EY and PR, respectively for the 0.015g of sorbent. The adsorption kinetic data of the dyes were analyzed and was found fitting well in a pseudo-second-order equation. Adsorption isotherms and separation factors showed that the adsorbent displays a high selectivity toward one dye in a three-component system with an affinity order of PR>MB>EY. On the other hand, acoustic waves emitted by the cavitation bubbles render a direct effect on the process. This is attributed to the discrete nature and high pressure amplitude of the waves, which creates excessively high convection in the medium, causing adsorption of the pollutants. The chemical nature of the pollutants influences the enhancement effect of ultrasound.
As there are a lot of antibacterial and anti-fungal resistant pathogens, researchers attempt to substitute antimicrobial drugs with various medical plants and novel nanoparticles. The present study was conducted to characterize antimicrobial activities of Euphorbia prostrata and Pelargonium graveolens extract alone and in combination with Mn-Ni@Fe3O4-NPs & Mn: Fe (OH)3-NPs on the DNA cleavage of E. coli and also Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Aspergillus oryzae, and Candida albicans. The effects of antimicrobial activities on above scenarios were evaluated using disc diffusion, MIC, MBC, and E. coli DNA electrophoresis methods. The results showed that the effects of antibacterial assay values of Euphorbia prostrata & Mn: Fe(OH)3 was 21.00 mm for E. coli and while it was 19.5 mm for Euphorbia prostrata & Mn-Ni@Fe3O4 against Pseudomonas aeruginosa at a concentration of 100mg/mL. The highest level of DNA cleavage was seen in mixed of Euphorbia prostrata & Mn: Fe(OH)3 nanoparticles. In conclusion, the combination of Euphorbia prostrata and Pelargonium graveolens extracts with nanostructures showed synergic effects on eliminating the bacteria via DNA destruction and others mechanisms. Moreover, the synergistic effect of nanoparticles with plant extracts seems to bring about new choices for the treatment of infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.