This research proposes a heuristic to solve the problem of the location selection of incinerators and the vehicle routing of infectious waste collection for hospitals in the Northeast of Thailand. The developed heuristic is called the Greedy Randomized Adaptive Large Neighborhood Search Procedure (GRALNSP)and applies the principles of the Greedy Randomized Adaptive Search Procedure (GRASP) and Adaptive Large Neighborhood Search (ALNS) in the local search. The results from GRALNSP are compared with those from the exact method processed by the A Mathematical Programming Language (AMPL) program. For small-sized problems, experiments showed that both methods provided no different results with the global optimal solution, but GRALNSP required less computational time. When the problems were larger-scale and more complicated, AMPL could not find the optimal solution within the limited period of computational time while GRALNSP provided better results with much less computational time. In solving the case study with GRALNSP, the result shows that the suitable locations for opening infectious waste incinerators are the locations of Pathum Ratwongsa district, Amnat Charoen province and Nam Phong district, Khonkaen province. An incinerator with a burning capacity of 600 kilogram/hour is used at both locations. The monthly total distances for infectious waste collection are 24,055.24 and 38,401.88 kilometers, respectively, and the lowest total cost is 6,268,970.40 baht per month.
The central rubber market of Songkhla province is the center of the collection and distribution of rubber production from sellers to purchasers. It is considered ineffective because sellers need to deliver whole raw rubber to the market, resulting in high transport costs, especially for those who came a great distance and had little quantity. This research applied the tabu search method to solve the location selection problem of the rubber purchasing depot and manage transport routes to the market. Results found that there were 16 purchasing depots. The central rubber market had unlimited purchasing capacity while the other purchasing depots limited the quantity of rubber to 10 tons. There were five transport routes and five trucks (four ten-wheeled trucks and one ten-wheeled truck with a trailer). The total delivery costs were 53,313.89 baht per day. The answers about efficiency from the Lingo 13 program with small, medium, and large problems and real problems were not significantly statistically different at a significance level of 0.05.
The disposal of infectious waste remains one of the most severe medical, social, and environmental problems in almost every country. Choosing the right location and arranging the most suitable transport route is one of the main issues in managing hazardous waste. Identifying a site for the disposal of infectious waste is a complicated process because both tangible and intangible factors must be considered together, and it also depends on various rules and regulations. This research aims to solve the problem of the size selection and location of infectious waste incinerators for 109 community hospitals in the upper part of northeastern Thailand by applying a differential evolution algorithm to solve the problem with the objective of minimizing the total system cost, which consists of the cost of transporting infectious waste, the fixed costs, and the variable cost of operating the infectious waste incinerator. The developed differential evolution produces vectors that differ from the conventional differential evolution. Instead of a single set of vectors, three are created to search for the solution. In addition to solving the problem of the case study, this research conducts numerical experiments with randomly generated data to measure the performance of the differential evolution algorithm. The results show that the proposed algorithm efficiently solves the problem and can find the global optimal solution for the problem studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.