This paper considers the problem of radiation therapy treatment planning for cancer patients. During radiation therapy, beams of radiation pass through a patient. This radiation kills both cancerous and normal cells, so the radiation therapy must be carefully planned to deliver a clinically prescribed dose to certain targets while sparing nearby organs and tissues. Currently, a technique called intensity modulated radiation therapy (IMRT) is considered to be the most effective radiation therapy for many forms of cancer. In IMRT, the patient is irradiated from several different directions. From each direction, one or more irregularly shaped radiation beams of uniform intensity are used to deliver the treatment. This paper deals with the problem of designing a treatment plan for IMRT that determines an optimal set of such shapes (called apertures) and their corresponding intensities. This is in contrast with established two-stage approaches where, in the first phase, each radiation beam is viewed as consisting of a set of individual beamlets, each with its own intensity. A second phase is then needed to approximate and decompose the optimal intensity profile into a set of apertures with corresponding intensities. The problem is formulated as a large-scale convex programming problem, and a column generation approach to deal with its dimensionality is developed. The associated pricing problem determines, in each iteration, one or more apertures to be added to our problem. Several variants of this pricing problem are discussed, each corresponding to a particular set of constraints that the apertures must satisfy in one or more of the currently available types of commercial IMRT equipment. Polynomial-time algorithms are presented for solving each of these variants of the pricing problem to optimality. Finally, the effectiveness of our approach is demonstrated on clinical data.
We present a novel linear programming (LP) based approach for efficiently solving the intensity modulated radiation therapy (IMRT) fluence-map optimization (FMO) problem to global optimality. Our model overcomes the apparent limitations of a linear-programming approach by approximating any convex objective function by a piecewise linear convex function. This approach allows us to retain the flexibility offered by general convex objective functions, while allowing us to formulate the FMO problem as a LP problem. In addition, a novel type of partial-volume constraint that bounds the tail averages of the differential dose-volume histograms of structures is imposed while retaining linearity as an alternative approach to improve dose homogeneity in the target volumes, and to attempt to spare as many critical structures as possible. The goal of this work is to develop a very rapid global optimization approach that finds high quality dose distributions. Implementation of this model has demonstrated excellent results. We found globally optimal solutions for eight 7-beam head-and-neck cases in less than 3 min of computational time on a single processor personal computer without the use of partial-volume constraints. Adding such constraints increased the running times by a factor of 2-3, but improved the sparing of critical structures. All cases demonstrated excellent target coverage (> 95%), target homogeneity (< 10% overdosing and < 7% underdosing) and organ sparing using at least one of the two models.
In this paper we consider the problem of routing trains through railway stations. This problem occurs as a subproblem in a project which the authors are carrying out in cooperation with the Dutch railways. The project involves the analysis of future infrastructural capacity requirements in the Dutch railway network. Part of this project is the automatic generation and evaluation of timetables. To generate a timetable a hierarchical approach is followed: at the upper level in the hierarchy a tentative timetable is generated, taking into account the specific scheduling problems of the trains at the railway stations at an aggregate level. At the lower level in the hierarchy it is checked whether the tentative timetable is feasible with respect to the safety rules and the connection requirements at the stations. To carry out this consistency check, detailed schedules for the trains at the railway yards have to be generated. In this paper we present a mathematical model formulation for this detailed scheduling problem, based on the Node Packing Problem (NPP). Furthermore, we describe a solution procedure for the problem, based on a branch-and-cut approach. The approach is tested in an empirical study with data from the station ofZwolle in The Netherlands.
We consider the problem of radiation therapy treatment planning for cancer patients. During radiation therapy, beams of radiation pass through a patient, killing both cancerous and normal cells. Thus, the radiation therapy must be carefully planned so that a clinically prescribed dose is delivered to targets containing cancerous cells, while nearby organs and tissues are spared. Currently, a technique called intensity-modulated radiation therapy (IMRT) is considered to be the most effective radiation therapy for many forms of cancer. In IMRT, the patient is irradiated from several beams, each of which is decomposed into hundreds of small beamlets, the intensities of which can be controlled individually. In this paper, we consider the problem of designing a treatment plan for IMRT when the orientations of the beams are given. We propose a new model that has the potential to achieve most of the goals with respect to the quality of a treatment plan that have been considered to date. However, in contrast with established mixed-integer and nonlinear programming formulations, we do so while retaining linearity of the optimization problem, which substantially improves the tractability of the optimization problem. Furthermore, we discuss how several additional quality and practical aspects of the problem that have been ignored to date can be incorporated into our linear model. We demonstrate the effectiveness of our approach on clinical data.
Models for finding treatment plans for intensity modulated radiation therapy are usually based on a number of structure-based treatment plan evaluation criteria, which are often conflicting. Rather than formulating a model that a priori quantifies the trade-offs between these criteria, we consider a multi-criteria optimization approach that aims at finding the so-called undominated treatment plans. We present a unifying framework for studying multi-criteria optimization problems for treatment planning that establishes conditions under which treatment plan evaluation criteria can be transformed into convex criteria while preserving the set of undominated treatment plans. Such transformations are identified for many of the criteria that have been proposed to date, establishing equivalences between these criteria. In addition, it is shown that the use of a nonconvex criterion can often be avoided by transformation to an equivalent convex criterion. In particular, we show that models employing criteria such as tumour control probability, normal tissue complication probability, probability of uncomplicated tumour control, as well as sigmoidal transformations of (generalized) equivalent uniform dose are equivalent to models formulated in terms of separable voxel-based criteria that penalize dose in individual voxels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.