Metal oxide nanoparticles are known to exhibit unique properties such as catalyzing the neutralization of superoxide anions, hydroxyl radicals, hydrogen peroxides and behave as antioxidant enzymes. Oxidative stress, damage and chronic inflammation are major causes and consequences of aging and age-associated disorders. With the increasing popularity of metal oxide nanoparticles, they have been applied in various age-related pathologies using their antioxidant property. Metal oxide nanoparticles have been used as diagnostic, therapeutic, and as theranostics. This review summarizes the applications of metal oxide nanoparticles in aging and age-associated disorders such as cardiovascular diseases, diabetes, cancer, neurodegenerative disorders. Oxidative stress plays a central role in the activation of inflammatory pathways, disturbing the mitochondrial function, decreasing the telomere length and leading the cell towards senescence or death. Oxidative damage is the common pathway in the progression of aging and related diseases. Metal oxide nanoparticles scavenge or precisely detect the generated reactive oxygen species, hence applied in both diagnostics and therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.