Phosphonate-functionalised dyes have been shown to bind strongly to aluminium oxides and to form stable 1:1 complexes with cyclodextrins at the surface.
Simple azo-dyes carrying phosphonic acid and arsonic acid substituents such as 4-(4-hydroxyphenyl azo)phenylphosphonic acid (5) and 4-(4-hydroxyphenylazo)phenylarsonic acid (6) bind more strongly to high surface area oxides such as aluminium trihydroxide and goethite than their carboxylic and sulfonic acid analogues and the phosphonate-functionalized dyes have been shown to have greater humidity fastness when printed onto commercial alumina-coated papers. Adsorption isotherm measurements provide evidence for the formation of ternary dye/cyclodextrin/surface complexes. Dyes which form such ternary complexes show higher light fastness when printed onto alumina coated papers in an ink formulation containing alpha-cyclodextrin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.