Efferocytosis can resolve airway inflammation and enhance airway tolerance in allergic asthma. While previous work has reported that progranulin (PGRN) regulated macrophage efferocytosis, but it is unclear whether PGRN‐mediated efferocytosis is associated with asthma. Here, we found that in an ovalbumin (OVA)‐induced allergic asthma model, the airway inflammation was suppressed and the apoptosis in lung tissues was ameliorated in PGRN‐deficient mice. In contrast, PGRN knockdown in human bronchial epithelial cells increased apoptosis in vitro. Furthermore, PGRN‐deficient macrophages had significantly stronger efferocytosis ability than wild type (WT) macrophages both in vitro and in vivo. PGRN‐deficient peritoneal macrophages (PMs) exhibited increased expression of genes associated with efferocytosis including milk fat globule‐epidermal growth factor 8 (MFG‐E8), peroxisome proliferator‐activated receptor gamma (PPAR‐γ) and sirtuin1 (SIRT1) and increased capacity to produce the anti‐inflammatory mediator interleukin (IL)‐10 during efferocytosis. GW9662, the inhibitor of PPAR‐γ, abolished increased efferocytosis and MFG‐E8 expression in PGRN‐deficient PMs suggesting that PGRN deficiency enhanced MFG‐E8‐mediated efferocytosis through PPAR‐γ. Correspondingly, efferocytosis genes were increased in the lungs of OVA‐induced PGRN‐deficient mice. GW9662 treatment reduced MFG‐E8 expression but did not significantly affect airway inflammation. Our results demonstrated that PGRN deficiency enhanced efferocytosis via the PPAR‐γ/MFG‐E8 pathway and this may be one of the reasons PGRN deficiency results in inhibition of airway inflammation in allergic asthma.
Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5‐like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti‐inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti‐inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.