Application of Si anodes is hindered by severe capacity fading due to pulverization of Si particles during the large volume changes of Si during charge/discharge and repeated formation of the solid‐electrolyte interphase. To address these issues, considerable efforts have been devoted to the development of Si composites with conductive carbons (Si/C composites). However, Si/C composites with high C content inevitably show low volumetric capacity because of low electrode density. For practical applications, the volumetric capacity of a Si/C composite electrode is more important than gravimetric capacity, but volumetric capacity in pressed electrodes is rarely reported. Herein, a novel synthesis strategy is demonstrate for a compact Si nanoparticle/graphene microspherical assembly with interfacial stability and mechanical strength achieved by consecutively formed chemical bonds using 3‐aminopropyltriethoxysilane and sucrose. The unpressed electrode (density: 0.71 g cm−3) shows a reversible specific capacity of 1470 mAh g−1 with a high initial coulombic efficiency of 83.7% at a current density of 1 C‐rate. The corresponding pressed electrode (density: 1.32 g cm−3) exhibits high reversible volumetric capacity of 1405 mAh cm−3 and gravimetric capacity of 1520 mAh g−1 with a high initial coulombic efficiency of 80.4% and excellent cycling stability of 83% over 100 cycles at 1 C‐rate.
Herein, we report the in‐situ synthesis of amorphous GeSe/CNT composite via defective‐carbon‐mediated chemical bonding for ultrastable Na‐ion storage. Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Specifically, the bonding strength tends to increase with increasing defect concentrations of CNTs. Remarkably, the strong chemical bonding between GeSe and CNTs significantly weakens Ge−Se bonds and promotes amorphization of GeSe, thus facilitating a reversible conversion reaction and enhancing Na‐ion diffusion. Consequently, GeSe/CNTs composite exhibits outstanding cyclability of 87.9% even after 1000 cycles at 1 A g−1 and a high‐rate capability of 288.3 mA h g−1 at 10 A g−1. Our work presents a promising approach for the amorphization of electrode materials enabled by the defective‐carbon‐mediated strong chemical bonding for Li‐, Na‐, and K‐ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.