Due to the characteristics of optical rotation, selective emission of polarized light, and circular dichroism, circularly polarized luminescent materials have aroused extensive attentions, and they have exhibited wide optoelectronic applications, such as optical data storage, liquid crystal display, and backlights in 3D displays. Here, the research progress of circularly polarized luminescent materials for organic optoelectronic devices is summarized. First, the definition and measurement of the circularly polarized light, such as optical rotatory dispersion, circular dichroism, and circularly polarized luminescence, are systematically introduced. Subsequently, the design strategies for various kinds of circularly polarized luminescent materials, including luminescent lanthanide and transition‐metal complexes, small organic luminophores, conjugated polymers, supramolecules, and liquid crystals are summarized. These materials exhibit circularly polarized luminescence with different magnitudes of luminescence dissymmetry values (glum). They are further applied in optoelectronic devices with excellent performance, and the influence factors on the glum values of these materials are presented in detail. Finally, the current opportunities and challenges in this rapidly growing research field are discussed systematically. The circularly polarized luminescent materials with large glum and high luminescence efficiency are very promising for applications in organic optoelectronic fields.
Organelle-targeted photosensitizers have been reported to be effective photodynamic therapy (PDT) agents. In this work, we designed and synthesized two iridium(III) complexes that specifically stain the mitochondria and lysosomes of living cells, respectively. Both complexes exhibited long-lived phosphorescence, which is sensitive to oxygen quenching. The photocytotoxicity of the complexes was evaluated under normoxic and hypoxic conditions. The results showed that HeLa cells treated with the mitochondria-targeted complex maintained a slower respiration rate, leading to a higher intracellular oxygen level under hypoxia. As a result, this complex exhibited an improved PDT effect compared to the lysosome-targeted complex, especially under hypoxia conditions, suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy.
Nasopharyngeal carcinoma is a poorly differentiated upper respiratory tract cancer that highly expresses human folate receptors (hFR). Binding of folate to hFR triggers endocytosis. The folate was conjugated into adenosine 5 0 -monophosphate (AMP) by 1,6-hexanediamine linkages. After reverse HPLC to reach 93% purity, the folate-AMP, which can only be used for transcription initiation but not for chain extension, was incorporated into the 5 0 -end of bacteriophage phi29 motor pRNA. A 16:1 ratio of folate-AMP to ATP in transcription resulted in more than 60% of the pRNA containing folate. A pRNA with a 5 0 -overhang is needed to enhance the accessibility of the 5 0 folate for specific receptor binding. Utilizing the engineered left/right interlocking loops, polyvalent dimeric pRNA nanoparticles were constructed using RNA nanotechnology to carry folate, a detection marker, and siRNA targeting at an antiapoptosis factor. The chimeric pRNAs were processed into ds-siRNA by Dicer. Incubation of nasopharyngeal epidermal carcinoma (KB) cells with the dimer resulted in its entry into cancer cells, and the subsequent silencing of the target gene. Such a proteinfree RNA nanoparticle with undetectable antigenicity has a potential for repeated long-term administration for nasopharyngeal carcinoma as the effectiveness and specificity were confirmed by ex vivo delivery in the animal trial. Gene Therapy (2006) 13, 814-820.
The development of organic single-molecule solid-state white emitters holds a great promise for advanced lighting and display applications. Highly emissive single-molecule white emitters were achieved by the design and synthesis of a series of o-carborane-based luminophores. These luminophores are able to induce multiple emissions to directly emit high-purity white light in solid state. By tuning both molecular and aggregate structures, a significantly improved white-light efficiency has been realized (absolute quantum yield 67 %), which is the highest value among the known organic single-molecule white emitters in the solid state. The fine-tuning of the packing modes from H- to J- and cross-stacking aggregates as well as intermolecular hydrogen bonds are successful in one molecular skeleton. These are crucial for highly emissive white-light emission in the solid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.