BackgroundAccumulating evidence has highlighted the significance of chromatin regulator (CR) in pathogenesis and progression of cancer. However, the prognostic role of CRs in LUAD remains obscure. We aim to detect the prognostic value of CRs in LUAD and create favorable signature for assessing prognosis and clinical value of LUAD patients.MethodsThe mRNA sequencing data and clinical information were obtained from TCGA and GEO databases. Gene consensus clustering analysis was utilized to determine the molecular subtype of LUAD. Cox regression methods were employed to set up the CRs-based signature (CRBS) for evaluating survival rate in LUAD. Biological function and signaling pathways were identified by KEGG and GSEA analyses. In addition, we calculated the infiltration level of immunocyte by CIBERSORT algorithm. The expressions of model hub genes were detected in LUAD cell lines by real-time polymerase chain reaction (PCR).ResultsKEGG analysis suggested the CRs were mainly involved in histone modification, nuclear division and DNA modification. Consensus clustering analysis identified a novel CRs-associated subtype which divided the combined LUAD cohort into two clusters (C1 = 217 and C2 = 296). We noticed that a remarkable discrepancy in survival rate among two clusters. Then, a total of 120 differentially expressed CRs were enrolled into stepwise Cox analyses. Four hub CRs (CBX7, HMGA2, NPAS2 and PRC1) were selected to create a risk signature which could accurately forecast patient outcomes and differentiate patient risk. GSEA unearthed that mTORC1 pathway, PI3K/Akt/mTOR and p53 pathway were greatly enriched in CRBS-high cohort. Moreover, the infiltration percentages of macrophage M0, macrophage M2, resting NK cells, memory B cells, dendritic cells and mast cells were statistically significantly different in the two groups. PCR assay confirmed the differential expression of four model biomarkers.ConclusionsAltogether, our project developed a robust risk signature based on CRs and offered novel insights into individualized treatment for LUAD cases.
Esophageal carcinoma (ESCA) is one of the most frequent types of malignant tumor that has a dismal prognosis. This research applied datasets aimed from the GEO and TCGA to create a prognostic signature for forecasting the clinical outcome of ESCA patients on the basis of a circRNA-associated regulatory network. Methods. A regulatory network associated with ESCA was established based on transcriptome data of circRNAs, miRNAs, and mRNAs. Functional annotations were implemented to further explore the mechanism of ESCA. Cox relative regression method was applied to create a risk signature. Besides, the immune microenvironment of the signature was investigated by utilizing the CIBERSORT algorithm. Results. Based on 27 DEcircRNAs, 65 DEmiRNAs, and 780 DEmRNAs, the circRNA-miRNA-mRNA network was finally set up. Functional enrichment unearthed that the regulatory network might participate in phosphorylation negative regulation, MAPK pathway, and PI3K/AKT pathway. This study established a risk scoring signature based on the seven immune-related genes (IRGs) (MARP14, RASGR1, PTK2, HMGB1, DKK1, RARB, and IGF1R), which was validated for its reliability. A stable and accurate nomogram combining immune-related risk scores with clinical features was constructed. Furthermore, we observed that the risk model was also related to the immunocyte infiltration. Conclusion. Our study successfully created a circRNA-associated regulatory network and further developed an immune-related model to forecast the clinical outcome of ESCA patients as well as to assess their immune status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.