Hepatic ischemia/reperfusion (I/R) injury is characterized by the generation of reactive oxygen species (ROS), such as superoxide anions and hydrogen peroxide. The aim of this study is to investigate whether antioxidative gene delivery by our polylipid nanoparticles (PLNP) is an effective approach for prevention of the injury. Polyplexes of extracellular superoxide dismutase (EC-SOD) and/or catalase genes were injected via the portal vein 1 day prior to a warm I/R procedure in mice. The effects of the gene delivery were determined 6 hours after starting reperfusion. PLNP-mediated antioxidative gene delivery led to a marked increase in human EC-SOD and catalase gene expression in the liver. Liver superoxide dismutase (SOD) and catalase activity both increased approximately 10-fold. Increased liver superoxide anion levels caused by the I/R procedure were reduced to normal levels by EC-SOD gene delivery. The overexpression of these 2 antioxidative genes significantly suppressed the I/R-induced elevation of serum alanine aminotransferase (ALT) levels, decreased liver malondialdehyde content, restored glutathione reserve, and improved liver histology. In conclusion, EC-SOD or catalase gene delivery by PLNP resulted in high levels of the transgene activity in the liver, and markedly attenuated hepatic I/R injury. The protection is directly associated with elevated antioxidative enzyme activity as the result of the gene delivery. This novel approach may become a potential therapy to improve graft function and survival after liver transplantation.
Allopurinol and apocynin exerted protective effects on hepatic ischemia/reperfusion injury. The protection is associated with blocking the generation of superoxide anions during the hepatic I/R procedure by inhibiting xanthine oxidase and NADPH oxidase activity.
BackgroundAccumulating evidence suggests that activated hepatocytes are involved in the deposition of the excess extracellular matrix during liver fibrosis via the epithelial to mesenchymal transition. Lipid accumulation in hepatocytes are implicated in the pathogenesis of chronic liver injury. CD36 is known to mediate long-chain fatty acid (LCFA) uptake and lipid metabolism. However, it is unclear whether LCFA directly promotes hepatocyte activation and the involved mechanisms have not been fully clarified.MethodsMice were fed with a high fat diet (HFD) and normal hepatocyte cells (Chang liver cells) were treated with palmitic acid (PA) in vivo and in vitro. Real-time polymerase chain reaction (RT-PCR) and western blotting were used to examine the gene and protein expression of molecules involved in hepatic fibrogenesis and hepatocyte activation. CD36 was knocked down by transfecting CD36 siRNA into hepatocyte cells. Hydrogen peroxide (H2O2) and reactive oxygen species (ROS) levels were detected using commercial kits.ResultsHFD induced a profibrogenic response and up-regulated CD36 expression in vivo. Analogously, PA increased lipid accumulation and induced human hepatocyte activation in vitro, which was also accompanied by increased CD36 expression. Interestingly, knockdown of CD36 resulted in a reduction of hepatocyte lipid deposition and decreased expression of Acta2 (34% decrease), Vimentin (29% decrease), Desmin (60% decrease), and TGF-β signaling pathway related genes. In addition, HFD and PA increased the production of H2O2 in vivo (48% increase) and in vitro (385% increase), and the antioxidant, NAC, ameliorated PA-induced hepatocyte activation. Furthermore, silencing of CD36 in vitro markedly attenuated PA-induced oxidative stress (H2O2: 41% decrease; ROS: 39% decrease), and the anti-activation effects of CD36 knockdown could be abolished by pretreatment with H2O2.ConclusionsOur study demonstrated that LCFA facilitates hepatocyte activation by up-regulating oxidative stress through CD36, which could be an important mechanism in the development of hepatic fibrosis.
These findings demonstrate for the first time that LV transduction led to the long-term expression of fully functional transgene expression in both in vitro and in vivo systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.