The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.
This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.
Impaired proprioception and poor muscular stabilization in the frontal plane may lead to knee instability during functional activities, a common complaint in persons with knee osteoarthritis (KOA). Understanding these frontal plane neuromechanical properties in KOA will help elucidate the factors contributing to knee instability and aid in the development of targeted intervention strategies. The study objectives were to compare knee varus-valgus proprioception, isometric muscle strength, and active muscular contribution to stability between persons with medial KOA and healthy controls. We evaluated knee frontal plane neuromechanical parameters in 14 participants with medial KOA and 14 age- and gender-matched controls, using a joint driving device (JDD) with a customized motor and a 6-axis force sensor. Analysis of covariance with BMI as a covariate was used to test the differences in varus-valgus neuromechanical parameters between these two groups. The KOA group had impaired varus proprioception acuity (1.08 ± 0.59° vs. 0.69 ± 0.49°, p < 0.05), decreased normalized varus muscle strength (1.31 ± 0.75% vs. 1.79 ± 0.84% body weight, p < 0.05), a trend toward decreased valgus strength (1.29 ± 0.67% vs. 1.88 ± 0.99%, p = 0.054), and impaired ability to actively stabilize the knee in the frontal plane during external perturbation (4.67 ± 2.86 vs. 8.26 ± 5.95 Nm/degree, p < 0.05). The knee frontal plane sensorimotor control system is compromised in persons with medial KOA. Our findings suggest varus-valgus control deficits in both the afferent input (proprioceptive acuity) and muscular effectors (muscle strength and capacity to stabilize the joint).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.