Production system modeling aims to investigate the principles of production procedures and to reveal the relationship between components and systems. Tremendous efforts have been devoted to production system modeling for the serial production system. However, most of the research focuses on the analysis of the systems at the steady state. Due to the emphasis of the quality management, production systems with rework loops are widely used in today’s manufacturing industrials, which the traditional approaches are not applicable to. Since the recent analysis of transients shows significant value and great potential in manufacturing systems, in this article, a new mechanism for rework is introduced based on the principles of quality management and lean production. A novel “Instant-Checking” method is developed to model Bernoulli serial production system considering rework loops. This method overcomes conventional restrictions and limited assumptions, and it extends the problem to systems with complex structures. Meanwhile, the analysis for transients is conducted to demonstrate relationships between component- and system-level characteristics. Finally, numerical experiments are performed to verify the effectiveness of the model.
In the dimension synthesis of the spatial linkages, the geometric characteristics of floating links in mechanisms reveal the geometric relationship between the motion task and the dimensions of the mechanisms. In order to establish the kinematic geometry rules corresponding to the motion of the floating link, this paper transforms the kinematic problems of geometric elements on the floating link into geometric problems and uses the geometric procedure to solve the spatial linkages synthesis problem with four given positions. In a previous work, we have extracted the kinematic geometry rules of a line with two and three positions. However, as the number of task positions increases, the kinematic characteristics representing the position transformation become more complicated. The method proposed in this paper extends the previous work to four given positions and builds up the geometric relationships among the kinematic rules for two, three, and four positions. The establishment of this geometric relationship is helpful to unify the synthesis procedure of synthesis problems with different number of positions. After that, the two-plane projection system and the transformation of projection are introduced to establish a procedural graphical synthesis method.
A novel methodology ofphysical and electrical design rule based statistical process monitoring and modeling (PEDR-SPMM) was proposed. By the aid of principal component analysis, the correlated physical and electrical parameters are decomposed into an independent variable set. The key parameters of multiple products mixedrun could be formulated by the independent variable set, which reduce the modeling complexip, and also provide a way to get a comparison between different technology nodes. Index Terms-Design rule, principal component analysis, inline metrology, physical specifications, electrical specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.