Deep learning is one of the most effective approaches to medical image processing applications. Network models are being studied more and more for medical image segmentation challenges. The encoder–decoder structure is achieving great success, in particular the Unet architecture, which is used as a baseline architecture for the medical image segmentation networks. Traditional Unet and Unet-based networks still have a limitation that is not able to fully exploit the output features of the convolutional units in the node. In this study, we proposed a new network model named TMD-Unet, which had three main enhancements in comparison with Unet: (1) modifying the interconnection of the network node, (2) using dilated convolution instead of the standard convolution, and (3) integrating the multi-scale input features on the input side of the model and applying a dense skip connection instead of a regular skip connection. Our experiments were performed on seven datasets, including many different medical image modalities such as colonoscopy, electron microscopy (EM), dermoscopy, computed tomography (CT), and magnetic resonance imaging (MRI). The segmentation applications implemented in the paper include EM, nuclei, polyp, skin lesion, left atrium, spleen, and liver segmentation. The dice score of our proposed models achieved 96.43% for liver segmentation, 95.51% for spleen segmentation, 92.65% for polyp segmentation, 94.11% for EM segmentation, 92.49% for nuclei segmentation, 91.81% for left atrium segmentation, and 87.27% for skin lesion segmentation. The experimental results showed that the proposed model was superior to the popular models for all seven applications, which demonstrates the high generality of the proposed model.
Colorectal cancer is a dangerous disease with a high mortality rate. To increase the likelihood of successful treatment, early detection of polyps is a useful solution. The Unet-architecture network model is showing success in medical image segmentation including analysis of polyps from colonoscopy images. Traditional Unet and Unet-based models are often huge, requiring training and deployment with a highperformance system. Designing models with compact size and high performance would be an important goal. In this study, we proposed to modify the Residual Recurrent Unet architecture to improve the size of the model while ensuring the model performance. The proposed model has flexibility in changing the number of filters in convolution units. By taking advantage of the strengths of residual and recurrent structures in terms of reuse of convolutional functions, the new model, therefore, was not only smaller in size but also has superior performance compared to the traditional Unet model and the others. The evaluations were performed on three public Colonoscopy image datasets: CVC-ClinicDB, ETIS-LaribPolypDB, and CVC-ColonDB. The Dice score on CVC-ClinicDB reached 94.59%, ETIS-LaribPolypDB reached 92.73% and 93.31% on CVC-ColonDB dataset. The experimental results obtained from the proposed network on datasets were better than those in recent related studies. The introduced model has a smaller size than the traditional model nevertheless has outstanding performance, therefore, it would be extremely productive for developing applications on low-performance devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.