Treating bone cancer pain poses a major clinical challenge, and the mechanisms underlying bone cancer pain remain elusive. EphrinB-EphB receptor signaling may contribute to bone cancer pain through N-methyl-d-aspartate receptor neuronal mechanisms. Here, we report that ephrinB-EphB signaling may also act through a Toll-like receptor 4 (TLR4)-glial cell mechanism in the spinal cord. Bone cancer pain was induced by tibia bone cavity tumor cell implantation (TCI) in rats. TCI increased the expression of TLR4 and the EphB1 receptor, the activation of astrocytes and microglial cells, and increased levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The increased expression of TLR4 and EphB1 were colocalized with each other in astrocytes and microglial cells. Spinal knockdown of TLR4 suppressed TCI-induced behavioral signs of bone cancer pain. The TCI-induced activation of astrocytes and microglial cells, as well as the increased levels of IL-1β and TNF-α, were inhibited by intrathecal administration of TLR4-targeting siRNA2 and the EphB receptor antagonist EphB2-Fc, respectively. The administration of EphB2-Fc suppressed the TCI-induced increase of TLR4 expression but siRNA2 failed to affect TCI-induced EphB1 expression. Intrathecal administration of an exogenous EphB1 receptor activator, ephrinB2-Fc, increased the expression of TLR4 and the levels of IL-1β and TNF-α, activated astrocytes and microglial cells, and induced thermal hypersensitivity. These ephrinB2-Fc-induced alterations were suppressed by spinal knockdown of TLR4. This study suggests that TLR4 may be a potential target for preventing or reversing bone cancer pain and other similar painful processes mediated by ephrinB-EphB receptor signaling.
CD97 is a newly identified, activation-associated human leucocyte antigen with seven putative transmembrane domains. It has an extended extracellular segment containing several adhesion molecule structure motifs, and has been shown to interact with the human complement regulator, decay-accelerating factor (DAF, CD55). To understand further the interaction between CD97 and DAF, as well as the structure and function of CD97 in general, we have cloned the mouse CD97 cDNA and studied the encoded protein for its membrane association property and ability to interact specifically with the murine decay-accelerating factor. The full-length mouse CD97 cDNA that we have cloned and characterized encodes a protein that is 60% identical to the three epidermal growth factor (EGF) domain-containing form of human CD97 but does not contain the Arg-Gly-Asp (RGD) motif which is present in human CD97. Two other alternatively spliced forms of mouse CD97 were also identified. These forms differ by the number of EGF-like sequence repeats present in the N-terminal region. Northern blot analysis revealed that CD97 is expressed widely in mouse tissues and in resting as well as activated cultured mouse splenocytes. Transient transfection of human embryonic kidney (HEK) 293 cells with the mouse CD97 cDNA in a green-fluorescence protein vector (pEGFP-N1) showed plasma membrane targeting of the expressed protein. Western blot analysis confirmed its membrane association and identified the existence of a processed C-terminal fragment, supporting the notion that CD97 on the cell membrane is composed of post-translationally generated subunits. Adhesion studies demonstrated that normal, but not DAF knockout mouse erythrocytes and splenocytes adhered to mouse CD97-transfected HEK cells. The interaction of CD97 and DAF was found to be species-restrictive in that human erythrocytes were unable to bind to mouse CD97-transfected HEK cells. These results indicate that the general structure, membrane association property and DAF-binding ability of CD97 are conserved and that the adhesive interaction between CD97 and DAF is independent of the RGD motif. The finding that CD97 is distributed widely among various mouse tissues suggests that CD97 may have other roles beyond lymphocyte activation.
We propose that the concave part of the AP muscle pushes up the basal portion of the sebaceous lobule between the HFs and AP muscle during AP muscle contraction and hair erection. In addition, the sebaceous lobule located at the counter-angular position is squeezed by the HF during AP muscle relaxation and hair repositioning. Combined with the previous mechanism of SG secretion, this newly established mechanism based on the 3D structure of the FU will improve our understanding of AP muscle function and SG secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.