The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to new grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including onedimensional (1D) nanowires/nanotubes, and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained efforts have been devoted to creating mechanical devices toward the ultimate limit of miniaturization-genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-toatomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
Nanomechanical resonators based on atomic layers of tungsten diselenide (WSe2) offer intriguing prospects for enabling novel sensing and signal processing functions. The frequency scaling law of such resonant devices is critical for designing and realizing these high-frequency circuit components. Here, we elucidate the frequency scaling law for WSe2 nanomechanical resonators by studying devices of one-, two-, three-, to more than 100-layer thicknesses and different diameters. We observe resonant responses in both mechanical limits and clear elastic transition in between, revealing intrinsic material properties and devices parameters such as Young’s modulus and pretension. We further demonstrate a broad frequency tuning range (up to 230%) with a high tuning efficiency (up to 23% V–1). Such tuning efficiency is among the highest in resonators based on two-dimensional (2D) layered materials. Our findings can offer important guidelines for designing high-frequency WSe2 resonant devices.
Abstract-This paper presents a compact, low-profile, wearable dual-band antenna operating in the Wireless WLAN band of 5.15 ∼ 5.25 GHz and 5.72 ∼ 5.83 GHz. The proposed antenna is composed of a planar monopole and underneath three by three array arrangement of Jerusalem Cross (JC) structure metasurface. The simulated results show that the integrated antenna express 4.09% and 4.14% impendence bandwidths, increased gain up to 7.9 dB and 8.2 dB, front to back (FB) ratio achieved to 20 dB and 18 dB at the two frequencies, respectively. The measured results agree well with simulations. In addition, the metasurface not only is equivalent to a ground plane for isolation, but also acts as the main radiator, which enables a great reduction in the specific absorption rate (SAR). Furthermore, because of a compact solution, the proposed integrated antenna can be a promising device for various wearable systems.
In‐plane anisotropy in 2D rhenium disulfide (ReS2) offers intriguing opportunities for designing future electronic and optical devices, and toward such applications, it is crucial to identify the crystal orientation in such 2D anisotropic materials. Existing spectroscopy or electron microscopy methods for determining the crystalline orientation often require complicated sample preparing procedures and specialized equipment, which could sometimes limit their application. In this work, a dichromatic polarized reflectance method is demonstrated, which can quickly and accurately resolve the crystal orientation (Re–Re chain) in 2D ReS2 crystals with different thicknesses. Furthermore, it can be readily extended to multi‐chromatic schemes to achieve greater measurement capability and can be easily tailored to work for different 2D materials. The method offers a simple and effective approach for studying anisotropy in 2D materials.
The pretension of the membrane is applied with biaxial tension bracket; the digital dynamometer is used for measuring the change of the tension; the concentrated impact load is applied on the surface of rectangular membrane; the displacement change of each feature point on the membrane surface is measured by noncontact laser displacement sensor. Through this experiment, the vibration displacement-time curve of the rectangular membrane under the fixed boundary condition is obtained. Further, the vibration frequency is given, according to the power spectral density function. The results of the experimental research are used to verify and correct theoretical formula and make the foundation for further theoretical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.