Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors. Reliability Engineering and System Safety, Elsevier, 2019, 189, pp.
Abstract:As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG process model usually assumes a normal distributed degradation rate. However, the degradation rates in some applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data.Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by incorporating skew-normal random effects and measurement errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.